elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Arctic Meltponds: Automated Detection Algorithm Using Enhanced Machine Learning

Rösel, Anja and Neckel, Niklas and Jancauskas, Vytautas (2024) Arctic Meltponds: Automated Detection Algorithm Using Enhanced Machine Learning. In: EGU24-16672. EGU General Assembly 2024, 2024-04-14 - 2024-04-19, Vienna, Austria. doi: 10.5194/egusphere-egu24-16672.

[img] PDF
2MB

Abstract

Melt ponds are pools of water that form during summer on the surface of the arctic ice. Due to the lower albedo, melt ponds absorb more solar radiation than surrounding ice and hence have higher temperature. This causes more water to melt, creating a feedback loop. This means that melt pond fraction in ice sheets is an important factor to consider in global climate and sea ice models. In situ measurements are difficult and expensive in terms of time and labor. Furthermore, these measurements can only cover limited areas. This makes using Earth Observation methods for this task particularly attractive. Until today, there is no sophisticated global melt pond data set available: Accurate methods may exist for determining melt ponds from Sentinel-2 data. The downside of using Sentinel-2 is that parts of the High Arctic are not covered by this mission. MODIS data covers the whole globe at least once every three days, but the downside of it is that MODIS resolution is much coarser (250m vs. 10m). Since melt ponds are in general much smaller than 250m, it means that accurately capturing melt pond fraction from these data is difficult. We propose to address these issues by employing Deep Learning techniques. Namely, we use Sentinel-2 data to train a model to super-resolve MODIS images to higher resolution and to use all available MODIS bands and their surrounding pixels for information context when predicting melt pond and open water fractions. In addition, a thorough uncertainty quantification (UQ) will be applied by using the UQ Toolbox.

Item URL in elib:https://elib.dlr.de/203883/
Document Type:Conference or Workshop Item (Poster)
Title:Arctic Meltponds: Automated Detection Algorithm Using Enhanced Machine Learning
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Rösel, AnjaUNSPECIFIEDhttps://orcid.org/0000-0002-1802-1219158636629
Neckel, NiklasUNSPECIFIEDhttps://orcid.org/0000-0003-4300-5488UNSPECIFIED
Jancauskas, VytautasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:April 2024
Journal or Publication Title:EGU24-16672
Refereed publication:No
Open Access:Yes
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
DOI:10.5194/egusphere-egu24-16672
Status:Published
Keywords:Machine Learning, Sea Ice, remote sensing, Arctic Ocean, KI
Event Title:EGU General Assembly 2024
Event Location:Vienna, Austria
Event Type:international Conference
Event Start Date:14 April 2024
Event End Date:19 April 2024
Organizer:EGU
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Artificial Intelligence
Location: Oberpfaffenhofen
Institutes and Institutions:Remote Sensing Technology Institute > EO Data Science
Deposited By: Rösel, Dr. Anja
Deposited On:29 Apr 2024 11:03
Last Modified:29 Apr 2024 11:43

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.