elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Arctic Meltponds: Automated Detection Algorithm Using Enhanced Machine Learning

Rösel, Anja und Neckel, Niklas und Jancauskas, Vytautas (2024) Arctic Meltponds: Automated Detection Algorithm Using Enhanced Machine Learning. In: EGU24-16672. EGU General Assembly 2024, 2024-04-14 - 2024-04-19, Vienna, Austria. doi: 10.5194/egusphere-egu24-16672.

[img] PDF
2MB

Kurzfassung

Melt ponds are pools of water that form during summer on the surface of the arctic ice. Due to the lower albedo, melt ponds absorb more solar radiation than surrounding ice and hence have higher temperature. This causes more water to melt, creating a feedback loop. This means that melt pond fraction in ice sheets is an important factor to consider in global climate and sea ice models. In situ measurements are difficult and expensive in terms of time and labor. Furthermore, these measurements can only cover limited areas. This makes using Earth Observation methods for this task particularly attractive. Until today, there is no sophisticated global melt pond data set available: Accurate methods may exist for determining melt ponds from Sentinel-2 data. The downside of using Sentinel-2 is that parts of the High Arctic are not covered by this mission. MODIS data covers the whole globe at least once every three days, but the downside of it is that MODIS resolution is much coarser (250m vs. 10m). Since melt ponds are in general much smaller than 250m, it means that accurately capturing melt pond fraction from these data is difficult. We propose to address these issues by employing Deep Learning techniques. Namely, we use Sentinel-2 data to train a model to super-resolve MODIS images to higher resolution and to use all available MODIS bands and their surrounding pixels for information context when predicting melt pond and open water fractions. In addition, a thorough uncertainty quantification (UQ) will be applied by using the UQ Toolbox.

elib-URL des Eintrags:https://elib.dlr.de/203883/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Arctic Meltponds: Automated Detection Algorithm Using Enhanced Machine Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rösel, AnjaAnja.Roesel (at) dlr.dehttps://orcid.org/0000-0002-1802-1219158636629
Neckel, Niklasniklas.neckel (at) awi.dehttps://orcid.org/0000-0003-4300-5488NICHT SPEZIFIZIERT
Jancauskas, Vytautasvytautas.jancauskas (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:April 2024
Erschienen in:EGU24-16672
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.5194/egusphere-egu24-16672
Status:veröffentlicht
Stichwörter:Machine Learning, Sea Ice, remote sensing, Arctic Ocean, KI
Veranstaltungstitel:EGU General Assembly 2024
Veranstaltungsort:Vienna, Austria
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:14 April 2024
Veranstaltungsende:19 April 2024
Veranstalter :EGU
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Rösel, Dr. Anja
Hinterlegt am:29 Apr 2024 11:03
Letzte Änderung:29 Apr 2024 11:43

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.