elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Data science for understanding physics – modelling ship wake detectability using machine learning

Tings, Björn (2024) Data science for understanding physics – modelling ship wake detectability using machine learning. 9th Data Science Symposium, 2024-04-04 - 2024-04-05, Bremen, Germany.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://events.hifis.net/event/911/contributions/8664/

Kurzfassung

The detectability of wake signatures in satellite-based Synthetic Aperture Radar (SAR) acquisitions is dependent on various physical parameters describing the present situation during the detection. Ship wake signatures in SAR are complex structures consisting of multiple wake components appearing differently depending on the present detection situation. The physical parameters with influence on the detectability of those wake components are in the following called influencing parameters. Although various methods for automatic detection of wakes are being developed since decades, the dependency between detectability of wake components and the influencing parameters is not systematically analyzed. In this study, machine learning is applied to model the dependency between all wake components taking all influencing parameters into account. The composition of the machine learning models is analyzed in order to derive statements on physical relationships between influencing parameters and detectability of wake components. For this type of application, a figure of merit for detectability and a measure for uncertainty of derived statements is introduced. The results are contrasted against literature based on simulations and/or physical deductions on ship wakes in SAR imagery and their detectability. It is demonstrated that data science is not only useful for solving a specific task, i.e. wake component detection, but also to systematically generate understanding of the task’s underlying physics, i.e. wake component detectability. The systematic modelling of underlying physics can finally be applied for improving the specific task.

elib-URL des Eintrags:https://elib.dlr.de/203325/
Dokumentart:Konferenzbeitrag (Anderer)
Zusätzliche Informationen:Conference: https://events.hifis.net/event/911/
Titel:Data science for understanding physics – modelling ship wake detectability using machine learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Tings, BjörnBjoern.Tings (at) dlr.dehttps://orcid.org/0000-0002-1945-6433NICHT SPEZIFIZIERT
Datum:4 April 2024
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:SAR, Oceanography, ship wake detectability, machine learning
Veranstaltungstitel:9th Data Science Symposium
Veranstaltungsort:Bremen, Germany
Veranstaltungsart:nationale Konferenz
Veranstaltungsbeginn:4 April 2024
Veranstaltungsende:5 April 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - SAR-Methoden
Standort: Bremen , Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung
Hinterlegt von: Kaps, Ruth
Hinterlegt am:26 Apr 2024 12:01
Letzte Änderung:29 Apr 2024 10:39

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.