Liu, Chenying and Albrecht, Conrad M and Wang, Yi and Li, Qingyu and Zhu, Xiao Xiang (2024) AIO2: Online Correction of Object Labels for Deep Learning with Incomplete Annotation in Remote Sensing Image Segmentation. IEEE Transactions on Geoscience and Remote Sensing, 62, p. 5613917. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2024.3373908. ISSN 0196-2892.
PDF
- Published version
5MB |
Official URL: https://ieeexplore.ieee.org/document/10460569
Abstract
While the volume of remote sensing data is increasing daily, deep learning in Earth Observation faces lack of accurate annotations for supervised optimization. Crowdsourcing projects such as OpenStreetMap distribute the annotation load to their community. However, such annotation inevitably generates noise due to insufficient control of the label quality, lack of annotators, frequent changes of the Earth's surface as a result of natural disasters and urban development, among many other factors. We present Adaptively trIggered Online Object-wise correction (AIO2) to address annotation noise induced by incomplete label sets. AIO2 features an Adaptive Correction Trigger (ACT) module that avoids label correction when the model training under- or overfits, and an Online Object-wise label Correction (O2C) methodology that employs spatial information for automated label modification. AIO2 utilizes a mean teacher model to enhance training robustness with noisy labels to both stabilize the training accuracy curve for fitting in ACT and provide pseudo labels for correction in O2C. Moreover, O2C is implemented online without the need to store updated labels every training epoch. We validate our approach on two building footprint segmentation datasets with different spatial resolutions. Experimental results with varying degrees of building label noise demonstrate the robustness of AIO2. Source code will be available at https://github.com/zhu-xlab/AIO2.git.
Item URL in elib: | https://elib.dlr.de/203149/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | AIO2: Online Correction of Object Labels for Deep Learning with Incomplete Annotation in Remote Sensing Image Segmentation | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2024 | ||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 62 | ||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2024.3373908 | ||||||||||||||||||||||||
Page Range: | p. 5613917 | ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Building detection, curriculum learning, deep learning, early learning, label correction, memorization effects, noisy labels, remote sensing, semantic segmentation | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Liu, Chenying | ||||||||||||||||||||||||
Deposited On: | 12 Apr 2024 14:47 | ||||||||||||||||||||||||
Last Modified: | 12 Apr 2024 14:47 |
Repository Staff Only: item control page