Grundner, Arthur and Beucler, Tom and Gentine, Pierre and Eyring, Veronika (2024) Data-Driven Equation Discovery of a Cloud Cover Parameterization. Journal of Advances in Modeling Earth Systems, pp. 1-26. Wiley. doi: 10.1029/2023MS003763. ISSN 1942-2466.
![]() |
PDF
- Published version
1MB |
Official URL: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023MS003763
Abstract
A promising method for improving the representation of clouds in climate models, and hence climate projections, is to develop machine learning-based parameterizations using output from global storm-resolving models. While neural networks can achieve state-of-the-art performance within their training distribution, they can make unreliable predictions outside of it. Additionally, they often require post-hoc tools for interpretation. To avoid these limitations, we combine symbolic regression, sequential feature selection, and physical constraints in a hierarchical modeling framework. This framework allows us to discover new equations diagnosing cloud cover from coarse-grained variables of global storm-resolving model simulations. These analytical equations are interpretable by construction and easily transferable to other grids or climate models. Our best equation balances performance and complexity, achieving a performance comparable to that of neural networks (R2 = 0.94) while remaining simple (with only 11 trainable parameters). It reproduces cloud cover distributions more accurately than the Xu-Randall scheme across all cloud regimes (Hellinger distances < 0.09), and matches neural networks in condensate-rich regimes. When applied and fine-tuned to the ERA5 reanalysis, the equation exhibits superior transferability to new data compared to all other optimal cloud cover schemes. Our findings demonstrate the effectiveness of symbolic regression in discovering interpretable, physically-consistent, and nonlinear equations to parameterize cloud cover.
Item URL in elib: | https://elib.dlr.de/203075/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Data-Driven Equation Discovery of a Cloud Cover Parameterization | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 1 March 2024 | ||||||||||||||||||||
Journal or Publication Title: | Journal of Advances in Modeling Earth Systems | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.1029/2023MS003763 | ||||||||||||||||||||
Page Range: | pp. 1-26 | ||||||||||||||||||||
Publisher: | Wiley | ||||||||||||||||||||
ISSN: | 1942-2466 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Cloud Cover, Parameterization, Machine Learning, Symbolic Regression, Equation Discovery, Physical Constraints, PySR, Sequential Feature Selection, Pareto Frontier | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Atmospheric and climate research | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Atmospheric Physics > Earth System Model Evaluation and Analysis | ||||||||||||||||||||
Deposited By: | Grundner, Arthur | ||||||||||||||||||||
Deposited On: | 04 Mar 2024 11:03 | ||||||||||||||||||||
Last Modified: | 11 Nov 2024 14:06 |
Repository Staff Only: item control page