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Abstract A promising method for improving the representation of clouds in climate models, and hence
climate projections, is to develop machine learning‐based parameterizations using output from global storm‐
resolving models. While neural networks (NNs) can achieve state‐of‐the‐art performance within their training
distribution, they can make unreliable predictions outside of it. Additionally, they often require post‐hoc tools
for interpretation. To avoid these limitations, we combine symbolic regression, sequential feature selection, and
physical constraints in a hierarchical modeling framework. This framework allows us to discover new equations
diagnosing cloud cover from coarse‐grained variables of global storm‐resolving model simulations. These
analytical equations are interpretable by construction and easily transferable to other grids or climate models.
Our best equation balances performance and complexity, achieving a performance comparable to that of NNs
(R2 = 0.94) while remaining simple (with only 11 trainable parameters). It reproduces cloud cover distributions
more accurately than the Xu‐Randall scheme across all cloud regimes (Hellinger distances < 0.09), and matches
NNs in condensate‐rich regimes. When applied and fine‐tuned to the ERA5 reanalysis, the equation exhibits
superior transferability to new data compared to all other optimal cloud cover schemes. Our findings
demonstrate the effectiveness of symbolic regression in discovering interpretable, physically‐consistent, and
nonlinear equations to parameterize cloud cover.

Plain Language Summary In climate models, cloud cover is usually expressed as a function of
coarse, pixelated variables. Traditionally, this functional relationship is derived from physical assumptions. In
contrast, machine learning (ML) approaches, such as neural networks, sacrifice interpretability for
performance. In our approach, we use high‐resolution climate model output to learn a hierarchy of cloud
cover schemes from data. To bridge the gap between simple statistical methods and ML algorithms, we
employ a symbolic regression method. Unlike classical regression, which requires providing a set of basis
functions from which the equation is composed of, symbolic regression only requires mathematical operators
(such as +, ×) that it learns to combine. By using a genetic algorithm, inspired by the process of natural
selection, we discover an interpretable, nonlinear equation for cloud cover. This equation is simple, performs
well, satisfies physical principles, and outperforms other algorithms when applied to new observationally‐
informed data.

1. Introduction
Due to computational constraints, climate models used to make future projections spanning multiple decades
typically have horizontal resolutions of 50–100 km (Eyring et al., 2021). The coarse resolution necessitates the
parameterization of many subgrid‐scale processes (e.g., radiation, microphysics), which have a significant effect
on model forecasts (Stensrud, 2009). Climate models, such as the state‐of‐the‐art ICOsahedral Non‐hydrostatic
(ICON) model, exhibit long‐standing systematic biases, especially related to cloud parameterizations (Crueger
et al., 2018; Giorgetta et al., 2018). A fundamental component of the cloud parameterization package in ICON is
its cloud cover scheme, which, in its current form, diagnoses fractional cloud cover from large‐scale variables in
every grid cell (Giorgetta et al., 2018; Mauritsen et al., 2019). As cloud cover is directly used in the radiation
(Pincus & Stevens, 2013) and cloud microphysics (Lohmann & Roeckner, 1996) parameterizations of ICON, its
estimate directly influences the energy balance and the statistics of water vapor, cloud ice, and cloud water. The
current cloud cover scheme in ICON, based on Sundqvist et al. (1989), nevertheless makes some crude empirical
assumptions, such as a near‐exclusive emphasis on relative humidity (see Grundner et al. (2022) for further

RESEARCH ARTICLE
10.1029/2023MS003763

Special Section:
Machine learning application to
Earth system modeling

Key Points:
• We systematically derive and evaluate

cloud cover parameterizations of
various complexity from global storm‐
resolving simulation output

• Using symbolic regression combined
with physical constraints, we find a
new interpretable equation balancing
performance and simplicity

• Our data‐driven cloud cover equation
can be retuned with few samples,
facilitating transfer learning to gener-
alize to other realistic data

Supporting Information:
Supporting Information may be found in
the online version of this article.

Correspondence to:
A. Grundner,
arthur.grundner@dlr.de

Citation:
Grundner, A., Beucler, T., Gentine, P., &
Eyring, V. (2024). Data‐driven equation
discovery of a cloud cover
parameterization. Journal of Advances in
Modeling Earth Systems, 16,
e2023MS003763. https://doi.org/10.1029/
2023MS003763

Received 11 APR 2023
Accepted 21 NOV 2023

Author Contributions:
Conceptualization: Arthur Grundner,
Tom Beucler, Pierre Gentine,
Veronika Eyring
Data curation: Arthur Grundner
Formal analysis: Arthur Grundner,
Tom Beucler
Funding acquisition: Veronika Eyring
Investigation: Arthur Grundner,
Tom Beucler

© 2024 The Authors. Journal of Advances
in Modeling Earth Systems published by
Wiley Periodicals LLC on behalf of
American Geophysical Union.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

GRUNDNER ET AL. 1 of 26

https://orcid.org/0000-0002-3765-242X
https://orcid.org/0000-0002-5731-1040
https://orcid.org/0000-0002-0845-8345
https://orcid.org/0000-0002-6887-4885
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1942-2466.MLAMODEL1
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1942-2466.MLAMODEL1
mailto:arthur.grundner@dlr.de
https://doi.org/10.1029/2023MS003763
https://doi.org/10.1029/2023MS003763
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2023MS003763&domain=pdf&date_stamp=2024-02-29


discussion). These assumptions may impede the search for a parameterization that faithfully captures the
available data.

With the extended availability of high‐fidelity data and increasingly sophisticated machine learning (ML)
methods, ML algorithms have been developed for the parameterization of clouds and convection (e.g., Brenowitz
& Bretherton, 2018; Gentine et al., 2018; Krasnopolsky et al., 2013; O'Gorman and Dwyer, 2018; see reviews by
Beucler et al. (2023) and Gentine et al. (2021)). High‐resolution atmospheric simulations on storm‐resolving
scales (horizontal resolutions of a few kilometers) resolve deep convective processes explicitly (Weisman
et al., 1997), and provide useful training data with an improved physical representation of clouds and convection
(Hohenegger et al., 2020; Stevens et al., 2020). There are only few approaches that learn parameterizations
directly from observations (e.g., McCandless et al. (2022)), as these are challenged by the sparsity and noise of
observations (Rasp et al., 2018; Trenberth et al., 2009). Therefore, a two‐step process might be required, in which
the statistical model structure is first learned on high‐resolution modeled data before its parameters are fine‐tuned
on observations (transfer learning), leveraging the advantage of the consistency of the modeled data for the initial
training stage before having to deal with noisier observational data.

Neural networks (NNs) and random forests have been routinely used for ML‐based parameterizations. Unlike
traditional regression approaches, they are not limited to a particular functional formprovided by combining a set of
basis functions. They are usually fast at inference time and can be trained with very little domain knowledge.
However, this versatility comes at the cost of interpretability as explainable artificial intelligence methods still face
major challenges (Kumar et al., 2020; Molnar et al., 2021). Given this limitation, we ask: Canwe create data‐driven
cloud cover schemes that are interpretable by construction without renouncing the high data fidelity of NNs?

Here, we use a hierarchical modeling approach to systematically derive and evaluate a family of cloud cover
(interpreted as the cloud area fraction) schemes, ranging from traditional physical (but semi‐empirical) schemes
and simple regression models to NNs. We evaluate them according to their Pareto optimality (i.e., whether they
are the best performing model for their complexity). To bridge the gap between simple equations and high‐
performance NNs, we apply equation discovery in a data‐driven manner using state‐of‐the‐art symbolic
regression methods. In symbolic regression, as opposed to regular regression, the user first specifies a set of
mathematical operators instead of a set of basis functions. For instance, including division as a mathematical
operator may introduce rational nonlinearities, whose ubiquity and importance have been illustrated, for example,
in Kaheman et al. (2020). Based on these operators, the symbolic regression library creates a random initial
population of equations (Schmidt & Lipson, 2009). Inspired by the process of natural selection in the theory of
evolution, symbolic regression is usually implemented as a genetic algorithm that iteratively applies genetically
motivated operations (selection, crossover, mutation) to the set of candidate equations. At each step, the equations
are ranked based on their performance and simplicity, so that the top equations can be selected to be included in
the next population (Smits & Kotanchek, 2005). Advantages of training/discovering analytical models instead of
NNs include an immediate view of model content (e.g., whether physical constraints are satisfied) and the ability
to analyze the model structure directly using powerful mathematical tools (e.g., perturbation theory, numerical
stability analysis). Additionally, analytical models are straightforward to communicate to the broader scientific
community, to implement numerically, and fast to execute given the existence of optimized implementations of
well‐known functions.

To our knowledge, Zanna and Bolton (2020) marks the first usage of automated, data‐driven equation discovery
for climate applications. Training on highly idealized data, they used a sparse regression technique called rele-
vance vector machine to find an analytical model that parameterizes ocean eddies. In sparse regression, the user
defines a library of terms, and the algorithm determines a linear combination of those terms that best matches the
data while including as few terms as possible (Brunton et al., 2016; Champion et al., 2019; Rudy et al., 2017;
Zhang & Lin, 2018). In a follow‐up paper, Ross et al. (2023) employed symbolic regression to discover an
improved equation, again trained on idealized data, that performs similarly well as NNs across various metrics
and has greater generalization capability. Nonetheless, they had to assume that the equation was linear in terms of
its free/trainable parameters and additively separable as their method included an iterative approach to select
suitable terms. For the selection of terms, they took a human‐in‐the‐loop approach rather than solely relying on the
genetic algorithm. Additionally, the final discovered equation relied on high‐order spatial derivatives, which may
not be feasible to compute in a climate model. To prevent this issue, we only permit features we can either access
or easily derive in the climate model.
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Guiding questions for this study include: Using symbolic regression, can we automatically discover a physically
consistent equation for cloud cover whose performance is competitive with that of NNs? Given that modern
symbolic regression libraries can handle higher computational overhead, we want to relax prior assumptions of
linearity or separability of the equation. Then, what can we learn about the cloud cover parameterization problem
by sequentially selecting performance‐maximizing features in different predictive models? Finally, how much
better do simple models generalize and/or transfer to more realistic data sets?

We first introduce the data sets used for training, validation and testing (Section 2), the diverse data‐driven models
used in this study (Section 3), and evaluation metrics (Section 4), before studying the feature rankings, perfor-
mances and complexities of the different models (Section 5.1). We investigate their ability to reproduce cloud
cover distributions (Section 5.2), transfer to higher resolutions (Section 5.3), and adapt to the ERA5 reanalysis
(Section 5.4). We conclude with an analysis of the best analytical model we found using symbolic regression
(Section 6).

2. Data
In this section, we introduce the two data sets used to train and benchmark our cloud cover schemes: We first use
storm‐resolving ICON simulations to train high‐fidelity models (Section 2.1), before testing these models'
transferability to the ERA5 meteorological reanalysis, which is more directly informed by observations
(Section 2.2).

2.1. Global Storm‐Resolving Model Simulations (DYAMOND)

As the source for our training data, we use output from global storm‐resolving ICON simulations performed as
part of the DYnamics of the Atmospheric general circulation Modeled On Non‐hydrostatic Domains (DYA-
MOND) project. The project's first phase (“DYAMOND Summer”) included a simulation starting from 1 August
2016 (Stevens et al., 2019), while the second phase (“DYAMOND Winter”) was initialized on 20 January 2020
(Duras et al., 2021). In both phases, the ICON model simulated 40 days, providing three‐hourly output on a grid
with a horizontal resolution of 2.47 km.

Following the methodology of Grundner et al. (2022), we coarse‐grain the DYAMOND data to an ICON grid with
a typical climate model horizontal grid resolution of ≈80 km. Vertically, we coarse‐grain the data from 58 to 27
layers below an altitude of 21 km, which is the maximum altitude with clouds in the data set. For cloud cover, we
first estimate the vertically maximal cloud cover values in each low‐resolution grid cell before horizontally
coarse‐graining the resulting field. For all other variables, we take a three‐dimensional integral over the high‐
resolution grid cells overlapping a given low‐resolution grid cell. For details, we refer the reader to Appendix
A of Grundner et al. (2022). Due to the sequential processing of some parameterization schemes in the ICON
model, condensate‐free clouds can occur in the simulation output. To instead ensure consistency between cloud
cover and the other model variables, we follow Giorgetta et al. (2022) and manually set the cloud cover in the
high‐resolution grid cells to 100% when the cloud condensate mixing ratio exceeds 10− 6 kg/kg and to 0%
otherwise.

We remove the first 10 days of “DYAMOND Summer” and “DYAMOND Winter” as spin‐up, and discard
columns that contain NaNs (3.15% of all columns). From the remainder, we keep a random subset of 28.5% of the
data, while removing predominantly cloud‐free cells to mitigate a class imbalance in the output (“undersampling”
step). We then split the data into a training and a validation set, the latter of which is used for early stopping. To
avoid high correlations between the training and validation sets, we divide the data set into six temporally
connected parts. We choose the union of the second (≈21 August to 1 September 2016) and the fifth (≈9–19
February 2020) part to create our validation set. For all models except the traditional schemes, we additionally
normalize models' features (or “inputs”) so that they have zero mean and unit variance on the training set.

We define a set of 24 features F that the models (discussed in Section 3) can choose from. For clarity, we
decompose F into three subsets: F := F1∪F2∪F3. The first subset, F1 := {U,qv,qc,qi,T,p,RH} groups the hori-
zontal wind speed U [m/s] and thermodynamic variables known to influence cloud cover, namely specific hu-
midity qv [kg/kg], cloud water and ice mixing ratios qc [kg/kg] and qi [kg/kg], temperature T [K], pressure p [Pa],
and relative humidity RH with respect to water, approximated as:
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RH ≈ 0.00263
p

1Pa
qv exp[

17.67(273.15K − T)
T − 29.65K

] . (1)

The second subset F2 contains the first and second vertical derivatives of all features in F1. These derivatives are
computed by fitting splines to every vertical profile of a given variable and differentiating the spline at the grid
level heights to obtain derivatives on the irregular vertical grid. Finally, the third subsetF3 := {z,land,ps} includes
geometric height z [m] and the only two‐dimensional variables, that is, land fraction and surface pressure ps [Pa].

In Grundner et al. (2022) we found it sufficient to diagnose cloud cover using information from the close vertical
neighborhood of a grid cell. By utilizing vertical derivatives to incorporate this information, we ensure the
applicability of our cloud cover schemes to any vertical grid. Since our feature set F contains all features
appearing in our three baseline “traditional” parameterizations (see Section 3.1), we deem it comprehensive
enough for the scope of our study.

2.2. Meteorological Reanalysis (ERA5)

To test the transferability of our cloud cover schemes to observational data, we also use the ERA5 meteorological
reanalysis (Hersbach et al., 2018). We sample the first day of each quarter in 1979–2021 at a three‐hourly res-
olution. The days from 2000 to 2006 are taken from ERA5.1, which uses an improved representation of the
global‐mean temperatures in the upper troposphere and stratosphere. Depending on the ERA5 variable, they are
either stored on an N320 reduced Gaussian (e.g., for cloud cover) or a T639 spectral (e.g., for temperature) grid.
Using the CDO package (Schulzweida, 2019), we first remap all relevant variables to a regular Gaussian grid, and
then to the unstructured ICON grid described in Section 2.1. Vertically, we coarse‐grain from approximately 90 to
27 layers.

The univariate distributions of important features such as cloud water and ice do not match between the (coarse‐
grained) DYAMOND and (processed) ERA5 data. The maximal cloud ice values that are attained in the ERA5
data set are twice as large as in the DYAMOND data. We illustrate this in Figure 1, next to a comparison of the
distributions of cloud water, relative humidity and temperature. Due to differences in the distributions of cloud
ice, cloud water and relative humidity, we consider our processed ERA5 data a challenging data set to gener-
alize to.

3. Data‐Driven Modeling
We now introduce a family of data‐driven cloud cover schemes. We adopt a hierarchical modeling approach and
start with models that are interpretable by construction, that is, linear models, polynomials, and traditional
schemes. As a second step, we mostly focus on performance and therefore train deep NNs on the DYAMOND
data. To bridge the gap between the best‐performing and most interpretable models, we use symbolic regression
to discover analytical cloud cover schemes from data. These schemes are complex enough to include relevant
nonlinearities while remaining interpretable.

3.1. Existing Schemes

We first introduce three traditional diagnostic schemes for cloud cover and train them using the BFGS (Nocedal &
Wright, 1999) and Nelder‐Mead (Gao & Han, 2012) unconstrained optimizers (which outperform grid search
methods in our case), each time choosing the model that minimizes the mean squared error (MSE) on the vali-
dation set. Before doing so, we multiply the output of each of the three schemes by 100 to obtain percent cloud
cover values. The first is the Sundqvist scheme (Sundqvist et al., 1989), which is currently implemented in the
ICON climate model (Giorgetta et al., 2018). The Sundqvist scheme expresses cloud cover as a monotonically
increasing function of relative humidity. It assumes that cloud cover can only exist if relative humidity exceeds a
critical relative humidity threshold RH0, which itself is a function of the fraction between surface pressure and
pressure: If

RH > RH0 =
def RH0, top + (RH0, surf − RH0, top) exp (1 − (ps/p)

n
), (2)

then the Sundqvist cloud cover is given by
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CSundqvist =
def 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
min{RH,RHsat} − RHsat

RH0 − RHsat

√

. (3)

The Sundqvist scheme has four tunable parameters {RH0, surf , RH0, top, RHsat,n} . As properly representing marine
stratocumulus clouds in the Sundqvist scheme might require a different treatment (see e.g., Mauritsen
et al., 2019), we allow these parameters to differ between land and sea, which we separate using a land fraction
threshold of 0.5.

The second scheme is a simplified version of the Xu‐Randall scheme (Xu & Randall, 1996), which was found to
outperform the Sundqvist scheme on CloudSat data (Wang et al., 2023). It additionally depends on cloud water
and ice, ensuring that cloud cover is 0 in condensate‐free grid cells. It can be formulated as

CXu‐Randall =
def min{RHβ (1 − exp (− α(qc + qi))),1}. (4)

The Xu‐Randall scheme has only two tuning parameters: {α, β}.

The third scheme was introduced in Teixeira (2001) for subtropical boundary layer clouds. Teixeira arrived at a
diagnostic relationship for cloud cover by equating a cloud production term from detrainment and a cloud erosion
term from turbulent mixing with the environment. We can express the Teixeira scheme as

CTeixeira =
def Dqc

2qs (1 − R̂H)K

⎛

⎜
⎝− 1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
4qs (1 − R̂H)K

Dqc

√ ⎞

⎟
⎠, (5)

where R̂H := min{RH,1 − 10− 9} bounds relative humidity to 1 − 10− 9 to ensure reasonable asymptotics,
qs = qs(T, p) is the saturation specific humidity (Lohmann et al., 2016), and {D, K} are the detrainment rate and
the erosion coefficient, which are the two tuning parameters of the Teixeira scheme.

Figure 1. A comparison of the univariate distributions of four variables from the coarse‐grained DYAMOND and ERA5 data
sets. The y‐axes are scaled logarithmically to visualize the distributions' tails. While cloud ice is often larger in our processed
ERA5 data set, cloud water tends to be smaller than in the DYAMOND data. The distributions of temperature and relative
humidity are comparable.
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Besides those three traditional schemes, we additionally train the three NNs (cell‐, neighborhood‐, and column‐
based NNs) from Grundner et al. (2022) on the DYAMOND data. These three NNs receive their inputs either
from the same grid cell, the vertical neighborhood of the grid cell, or the entire grid column. Thus, they differ in
the amount of vertical locality that is assumed for cloud cover parameterization. As the “undersampling step” has
to be done at a cell‐based level, we omit it when pre‐processing the training data for the column‐based NN.
Nevertheless, the column‐based NN is evaluated on the same validation set as all other models.

Now that we have introduced three semi‐empirical cloud cover schemes, which can be used as baselines, we are
ready to derive a hierarchy of data‐driven cloud cover schemes.

3.2. Developing Parsimonious Models via Sequential Feature Selection

Our goal is to develop parameterizations for cloud cover that are not only performant, but also simple and
interpretable. Providing many, possibly correlated features to a model may needlessly increase its complexity and
allow the model to learn spurious links between its inputs and outputs (Nowack et al., 2020), impeding both
interpretability (Molnar, 2020) and generalizability (Brunton et al., 2016). Therefore, we instead seek parsi-
monious models. As our feature selection algorithm we use (forward) sequential feature selection (SFS).

3.2.1. Sequential Feature Selection

SFS starts without any features and carefully selects and adds features to a given type of model (e.g., a second‐
order polynomial) in a sequential manner. At each iteration, SFS selects the feature that optimizes the model's
performance on a computationally feasible subset of the training set, which is sufficiently large to ensure
robustness (see also Section 2.1). More specifically; letF contain all potential features of a model (type)M. Let us
further assume that the SFS approach has already chosen n features Pn⊆F at a given iteration (note that P0 ≔ ∅).
In the next iteration, the SFS method adds another feature Pn+1 = Pn∪{f̂ } , such that f̂ ∈F\maximizes the model's
performance as measured by the R2‐value. Thus, the SFS method tests whether

R2(MPn∪{ f̂ }) ≥ R2 (MPn∪{ĝ})

indeed holds on the training subset for all features ĝ∈F\. With the SFS approach, we discourage the choice of
correlated features and enforce sparsity by selecting a controlled number of features that already lead to the
desired performance. However, if two highly correlated features are both valuable predictors (as will be the case
with RH and ∂zRH), the SFS NN would pick them nonetheless. Another benefit is that by studying the order of
selected variables, optionally with the corresponding performance gains, we can gather intuition and physical
knowledge about the task at hand. On the way, we will obtain an approximation of the best‐performing set of
features for a given number of features. There is however no guarantee of it truly being the best‐performing
feature set due to the greedy nature of the feature selection algorithm, which decreases its computational cost.
Due to the high cost, we could only verify that the models would pick the same first two features (or four features
in the case of the linear model) using a non‐greedy selector. However, we found that for some random data subsets
the second‐order polynomial temporarily outperforms the third‐order polynomial due to the earlier pick of a third‐
order feature that decreased the score later on.

3.2.2. Linear Models and Polynomials

We allow first‐order (i.e., linear models), second‐order, and third‐order polynomials. For each of these model
types, we run SFS using the SequentialFeatureSelector of scikit‐learn (Pedregosa et al., 2011). In the case of
linear models, the pool of features F1 to choose from is precisely F (see Section 2.1). For second‐order poly-
nomials, F2 also includes second‐degree monomials of the features in F, that is,

F2 = {xy | x,y∈F}∪F.

Analogously we also consider third‐degree monomials:

F3 = {xyz | x,y,z∈F}∪F2
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in the case of third‐order polynomials. Thus, the set of possible terms grows from 25 to 325 for the second‐order
and would grow to 2,925 for the third‐order polynomials. However, to circumvent memory issues for the third‐
order polynomials, we restrict the pool of possible features to combinations of the 10 most important features. The
choice of these 10 features is informed by the SFS NNs (Section 3.2.3), which are able to select informative
features for nonlinear models. In addition to these 10 features, we also incorporate air pressure to later classify
samples into physically interpretable cloud regimes. To be specific, this implies that

F3 = {xyz | x,y,z∈ {1, RH, qi, qc, T, ∂zRH, ∂zzp, ∂zp, ∂zzRH,∂zT,ps,p}}.

By considering combinations of only 11 features, we reduce the total amount of possible terms from 2,925 to 364.
After obtaining sequences of selected features for each of the three model types, we fit sequences of models with
up to 10 features each using ordinary least squares linear regression.

3.2.3. Neural Networks

We train a sequence of SFS NNs with up to 10 features using the “mlxtend” Python package (Raschka, 2018). As
in the case of the linear models, the pool of possible features is F. We additionally train an NN with all 24 features
in F for comparison purposes. As our regression task is similar in nature (including the vertical locality as-
sumptions it makes for the features), we use the “Q3 NN” model architecture from Grundner et al. (2022) for all
SFS NNs. “Q3 NN”'s architecture has three hidden layers with 64 units each; it uses batch normalization and its
loss function includes L1 and L2‐regularization terms following hyperparameter optimization. After deriving the
sequence of 10 features on small training data subsets (see Section 5.1.1) we train the final SFS NNs on the entire
training data set, always limiting the number of training epochs to 25 and making use of early stopping. Without
the greedy assumption of the SFS approach we would already need to test more than 2,000 NNs for three features.

Due to the flexibility of NNs, when combining SFS with NNs, we obtain a sequence of features that is not bound
to a particular model structure. In Sections 3.2.2 and 3.3, we therefore reuse the SFS NN feature rankings for other
nonlinear models to restrict their set of possible features. The combination of SFS with NNs also yields a tentative
upper bound on the accuracy one can achieve with N features: If we assume that (a) SFS provides the best set of
features for a given number of features N; and (b) the NNs are able to outperform all other models given their
features, one would not be able to outperform the SFS NNs with the same number of features. Even though the
assumptions are only met approximately, we still receive helpful upper bounds on the performance of any model
with N features.

3.3. Symbolic Regression Fits

To improve upon the analytical models of Sections 3.1 and 3.2.2 without compromising interpretability, we
use recently‐developed symbolic regression packages. We choose the PySR (Cranmer, 2020) and the default
GP‐GOMEA (Virgolin et al., 2021) libraries, which are both based on genetic programming. GP‐GOMEA is
one of the best symbolic regression libraries according to SRBench, a symbolic regression benchmarking
project that compared 14 contemporary symbolic regression methods (La Cava et al., 2021). PySR is a very
flexible, efficient, well‐documented, and well‐maintained library. In PySR, we choose a large number of
potential operators to enable a wide range of functions (see Appendix C for details). We also tried
AIFeynman and found that its underlying assumption that one could learn from the NN gradient was
problematic for less idealized data. Other promising packages from the SRBench competition, such as DSR/
DSO and (Py)Operon, are left for future work. PySR and GP‐GOMEA can only utilize a very limited number
of features. Regardless of the number of features we provide, GP‐GOMEA only uses 3–4, while PySR uses
5–6 features. For this reason, PySR also has a built‐in tree‐based feature selection method to reduce the
number of potential features. Since the SFS NNs from Section 3.2.3 already provide a sequence of features
that can be used in general, nonlinear cases, we instead select the first five of these features to maximize
comparability between models. The decision to run PySR with five features is also motivated by the good
performance (R2 > 0.95) of the corresponding SFS NN (see Section 5.1.2). Each run of the PySR or
GP‐GOMEA algorithms adds new candidates to the list of final equations. From ≈600 of resulting equations,
we select those that have a good skill (R2 > 0.9), are interpretable, and satisfy most of the physical constraints
that we define in the following section. The search itself is performed on the normalized training data (see
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also Section 2.1). As a final step, we refine the free parameters in the
equation using the Nelder‐Mead and BFGS optimizers (as in Section 3.1).

4. Model Evaluation
4.1. Physical Constraints

To facilitate their use, we postulate that simple equations for cloud cover C(X)
ought to satisfy certain physical constraints (Gentine et al., 2021; Kashinath
et al., 2021): (1) The cloud cover output should be between 0% and 100%; (2)
an absence of cloud condensates should imply an absence of clouds; (3–5)
when relative humidity or the cloud water/ice mixing ratios increase (keeping
all other features fixed), then cloud cover should not decrease; (6) cloud cover
should not increase when temperature increases; (7) the function should be
smooth on the entire domain. We can mathematically formalize these physical
constraints:

1. PC1: C(X)∈ [0,100]%
2. PC2: (qc,qi) = 0 ⇒ C(X) = 0
3. PC3: ∂C(X)/∂RH ≥ 0
4. PC4: ∂C(X)/∂qc ≥ 0
5. PC5: ∂C(X)/∂qi ≥ 0
6. PC6: ∂C(X)/∂T ≤ 0
7. PC7: C(X) is a smooth function

While these physical constraints are intuitive, they will not be respected by data‐driven cloud cover schemes if
they are not satisfied in the data. In the DYAMOND data, the first physical constraint is always satisfied, and PC2

is satisfied in 99.7% of all condensate‐free samples. The remaining 0.3% are due to noise induced during coarse‐
graining. In order to check whether PC3–PC6 are satisfied in our subset of the coarse‐grained DYAMOND data,
we extract {qc, qi, RH, T}. We then separate the variable whose partial derivative we are interested in. Bounded by
the min/max‐values of the remaining three variables, we define a cube in this three‐dimensional space, which we
divide into N3 equally‐sized cubes. In this way, the three variables of the samples within the cubes become more
similar with increasing N. If we now fit a linear function in a given cube with the separated variable as the inputs
and cloud cover as the output, then we can use the sign of the function's slope to know whether the physical
constraint is satisfied.

On one hand, the test is more expressive the smaller the cubes are, as the samples have more similar values for
three of the four chosen variables and we can better approximate the partial derivative with respect to the
separated variable. However, we only guarantee similarity in three variables (omitting e.g., pressure). On the
other hand, as the size of the cubes decreases, so does the number of samples contained in a cube, and noisy
samples may skew the results. We therefore only consider the cubes that contain a sufficiently large number of
samples (at least 104 out of the 2.9 · 108).

We collect the results in Table 1, and find that the physical constraint PC3 (with respect to RH) is always satisfied.
The other constraints are satisfied in most (on average 76%) of the cubes. Thus, from the data we can deduce that
the final cloud cover scheme should satisfy PC1–PC3 in all and PC4–PC6 in most of the cases.

To enforce PC1, we always constrain the output to [0, 100] before computing the MSE. With the exception of the
linear and polynomial SFS models, we already ensure PC1 during training. For PC2, we can define cloud cover to
be 0 if the grid cell is condensate‐free. We can combine PC1 and PC2 to define cloud fraction C (in %) as

C(X) = {
0, if qi + qc = 0

100 ⋅ max{min{ f (X),1},0}, otherwise,
(6)

and our goal is to learn the best fit for f(X ). In the case of the Xu‐Randall and Teixeira schemes, ensuring PC2 is
not necessary since they satisfy the constraint by design.

Table 1
The Percentage of Data Cubes That Fulfill a Given Physical Constraint

(Maximum) Number of data cubes

Average (%)1 23 33 43 53 63 73

PC3 100 100 100 100 100 100 100 100

PC4 100 100 83 90 73 78 71 77.5

PC5 100 100 85 50 81 83 68 73.8

PC6 100 50 100 67 72 89 75 77.7

Note. Only the cubes with a sufficiently large amount of samples are taken
into account. The last column shows the proportion of cubes (across all sizes
we consider) in which the constraint is satisfied on average.
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4.2. Performance Metrics

We use different metrics to train and validate the cloud cover schemes. We always train to minimize the MSE,
which directly measures the average squared mismatch of the predictions f(xi) (usually set to be in [0, 100]%) and
the corresponding true (cloud cover) values yi:

MSE =def 1
N
∑
N

i=1
(C(xi) − yi)

2
. (7)

The coefficient of determination R2‐value takes the variance of the output Y = {yi}
N
i=1 into account:

R2 =
def 1 −

MSE
Var( Y)

. (8)

To compare discrete univariate probability distributions P and Q, we use the Hellinger distance

H(P,Q) =def 1
̅̅̅
2

√ ‖
̅̅̅
P

√
−

̅̅̅̅
Q

√
‖2. (9)

As opposed to the Kullback‐Leibler divergence, the Hellinger distance between two distributions is always
symmetric and finite (in [0, 1]).

As our measure of complexity we use the number of (free/tunable/trainable) parameters of a model. A clear
limitation of this complexity measure is that, for example, the expression f(x) = ax is considered as complex as
g(x) = sin(exp(ax)) . However, in this study, most of our models (i.e., the linear models, polynomials, and NNs)
do not contain these types of nested operators. Instead, each additional parameter usually corresponds to an
additional term in the equation. In the case of symbolic regression tools, operators are already taken into account
(see Appendix C) during the selection process, and we find that the number of trainable parameters suffices to
compare the complexity of our symbolic equations in their simplified forms. Finally, this complexity measure is
one of the few that can be used for both analytical equations and NNs.

4.3. Cloud Regime‐Based Evaluation

We define four cloud regimes based on air pressure p and the total cloud condensate qt (cloud water plus cloud ice)
mixing ratio:

1. Low air pressure, little condensate (cirrus‐type cloud regime)
2. High air pressure, little condensate (cumulus‐type cloud regime)
3. Low air pressure, substantial condensate (deep convective‐type cloud regime)
4. High air pressure, substantial condensate (stratus‐type cloud regime)

Pressure or condensate values that are above their medians (78,787 Pa and 1.62 · 10− 5 kg/kg) are considered to be
large, while values below the median are considered small. Each regime has a similar amount of samples (between
35 and 60 million samples per regime). In this simplified data split, based on Rossow and Schiffer (1991), air
pressure and total cloud condensate mixing ratio serve as proxies for cloud top pressure and cloud optical
thickness. These regimes will help decompose model error to better understand the strengths and weaknesses of
each model, discussed in the following section.

5. Results
5.1. Performance on the Storm‐Resolving (DYAMOND) Training Set

In this section, we train the models we introduced in Section 3 on the (coarse‐grained) DYAMOND training data
and compare their performance and complexity on the DYAMOND validation data. We start with the SFS's
results.
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5.1.1. Feature Ranking

We perform 10 SFS runs for each linear model, polynomial, and NN from Section 3.3. Each run varies the random
training subset, which consists of O(105) samples in the case of NNs and O(106) samples in the case of
polynomials (as polynomials are faster to train). We then average the rank of a selected feature and note it down in
brackets. We omit the average rank if it is the same for each random subset. By Pd,d∈ {1,2,3} we denote
polynomials of degree d (e.g., P1 groups linear models). The sequences in which the features are selected are:

P1: RH → T → ∂zRH → qi[4.3] → ∂zzp[4.7] → qc → U → ∂zzqc → ∂zqv → zg
P2: RH → T → qcqi → RH∂zRH → T∂zRH[5.6] → qvRH[6.4] → TRH[7.4] →

RH2[7.9] → ∂zqv[9.2] → U[10.1]

P3: RH → T → qcqi → T2RH[4.4] → RH2[5.4] → T2[6.7] → RH∂zRH[7.4] →

∂zRH[8.3] → p2∂zzp[8.8] → T∂zRH[9.4]

NNs : RH → qi → qc → T[4.1] → ∂zRH[4.9] → ∂zzp[6.7] → ∂zp[8.1] →

∂zzRH[8.3] → ∂zT[10.0] → ps[10.1]

Regardless of the model, the selection algorithm chooses RH as the most informative feature for predicting cloud
cover. This is consistent with, for example, Walcek (1994), who considers RH to be the best single indicator of
cloud cover in most of the troposphere. Considering that the cloud cover in the high‐resolution data was only
derived from the cloud condensate mixing ratio, the models' prioritization of RH is quite remarkable. From the
feature sequences, we can also deduce that cloud cover depends on the mixing ratios of cloud condensates in a
very nonlinear way: The polynomials choose qiqc as their third feature and do not use any other terms containing
qi or qc. The NNs choose qi and qc as their second and third features, and are able to express a nonlinear function of
these two features. The linear model cannot fully exploit qi and qc and hence attaches less importance to them.

Since RH and T are chosen as the most informative features for the linear model, we can derive a notable linear
dependence of cloud cover on these two features (the corresponding model being f (RH,T) = 41.31RH−
15.54T + 44.63). However, given the possibility, higher order terms of T and RH are chosen as additional pre-
dictors over, for instance, p or qv. Finally, ∂zRH is an important recurrent feature for all models. Depending on the
model, the coefficient associated with ∂zRH can be either negative or positive. If ∂zRH ≠ 0, one can assume some
variation of cloud cover (i.e., cloud area fraction) vertically within the grid cell. Thus, ∂zRH is a meaningful proxy
for the subgrid vertical variability of cloud area fraction. Since the effective cloud area fraction of the entire grid cell
is related to the maximum cloud area fraction at a given height within the grid cell, this could explain the signif-
icance of ∂zRH.

5.1.2. Balancing Performance and Complexity

In Figure 2, we depict all of our models in a performance × complexity plane. We measure performance as the
MSE on the validation (sub)set of the DYAMOND data and use the number of free parameters in the model as our
complexity metric. We add the Pareto frontier, defined to pass through the best‐performing models of a given
complexity. The SFS sequences described above are used to train the SFS models of the corresponding type. The
only exception is the swapped order of ∂zp and ∂zzp for the NNs, as we base the sequence shown in Figure 2 on a
single SFS run. For the SFS NNs with 4–7 features, it was possible to reduce the number of layers and hidden units
without significant performance degradation, which reduced the number of free parameters by about an order of
magnitude and put them on the Pareto frontier.

For most models, we train a second version that does not need to learn that condensate‐free cells are always cloud‐
free, but for which the constraint is embedded by Equation 6. For such models, condensate‐free cells are removed
from the training set. In addition to the schemes of Xu‐Randall and Teixeira (see Section 3.1), we find that it is
also not necessary to enforce PC2 in the case of NNs, since they are able to learn PC2 without degrading their
performance. PC1 is always enforced by default for all models.

We find that, even though the Sundqvist and Teixeira schemes are also tuned to the training set, linear models of
the same complexity outperform them. However, these linear models do not lie on the Pareto frontier either. The
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lower performance of the Teixeira scheme is most likely due to the fact that it was developed for subtropical
boundary layer clouds. Its MSE experiences a reduction (to 290 [%]2) when evaluated exclusively within the
subtropics (from 23.4 to 35° north and south). Among the existing schemes, only the Xu‐Randall scheme with its
two tuning parameters set to {α, β}= {0.9, 9 · 105} is on the Pareto frontier as the simplest model. With relatively
large values for α and β, cloud cover is always approximately equal to relative humidity (i.e., C ≈ RH0.9) when
cloud condensates are present. The next models on the Pareto frontier are third‐order SFS polynomials P3 with 2–
6 features with PC2 enforced. To account for the bias term and the output of the polynomial being set to zero in
condensate‐free cells, the number of their parameters is the number of features plus 2. We then pass the line with
R2 = 0.9 and find three symbolic regression fits on the Pareto frontier, each trained on the five most informative
features for the SFS NNs. All symbolic regression equations that appear in the plot are listed in Appendix D. We
will analyze the PySR equation with arguably the best tradeoff between complexity (11 free parameters when
phrased in terms of normalized variables) and performance (MSE = 103.95 [%]2, improved spatial distribution as
illustrated in Figure S2 in Supporting Information S1) in Section 6. The remaining models on the Pareto frontier
are SFS NNs with 4–10 features and finally the NN with all 24 features defined in Section 2.1 included
(MSE = 30.51 [%]2).

Interestingly, the (quasi‐local) 24‐feature NN is able to achieve a slightly lower MSE (30.51 [%]2) than the (non‐
local) column‐based NN (33.37 [%]2) with its 163 features. The two aspects that benefit the 24‐feature NN are the
additional information on the horizontal wind speed U and its derivatives, and the smaller number of condensate‐
free cells in its training set due to undersampling (Sections 2.1 and 3.1). The SFS NN with 10 features already
shows very similar performance (MSE = 34.64 [%]2) to the column‐based NN with a (12 times) smaller
complexity and fewer, more commonly accessible features.

Comparing the small improvements of the linear SFS models (up to MSE = 250.43 [%]2) with the larger im-
provements of SFS polynomials (up to MSE = 190.78 [%]2) with increasing complexity, it can be deduced that it
is beneficial to include nonlinear terms instead of additional features in a linear model. For example, NNs require

Figure 2. All models described in Section 3 in a performance× complexity plot. The dashed vertical lines mark the R2= 0.95‐
and R2= 0.9‐boundaries. Models marked with a cross satisfy the second physical constraint PC2 (using Equation 6). Only the
best PySR and GP‐GOMEA symbolic regression fits are shown. The neural networks (NNs) in cyan are the column‐,
neighborhood‐ and cell‐based NNs when read from left to right. The sequential feature selection (SFS) NN with the lowest
mean squared error (MSE) contains all 24 features described in Section 2.1. For the SFS NNs, the last added feature is
specified in curly brackets. Since the validation MSE of the SFS NNs decreases with additional features, we can extract the
features for a given SFS NN by reading from right to left (e.g., the features of the SFS NN marked with {qc} are {qi, qc, RH}).
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only three features to predict cloud cover reasonably well (R2 = 0.933), and five features are sufficient to produce
an excellent model (R2 = 0.962) because they learn to nonlinearly transform these features.

The PySR equations can estimate cloud cover very well (R2 ∈ [0.935, 0.940]). However, while the PySR
equations depend on five features, the NNs are able to outperform them with as few as four features (R2 = 0.944).
This suggests that the NNs learn better functional dependencies than PySR, as they do better with less infor-
mation. However, the improved performance of the NNs comes at the cost of additional complexity and greatly
reduced interpretability.

5.2. Split by Cloud Regimes

In this section, we divide the DYAMOND data set into the four cloud regimes introduced in Section 4.3. In
Figure 3, we compare the cloud cover predictions of Pareto‐optimal models (on Figure 2's Pareto frontier) with the
actual cloud cover distribution in these regimes. We evaluate the models located at favorable positions on the
Pareto frontier (at the beginning to maximize simplicity, at the end to maximize performance, or on some corners
to optimally balance both). Of the two PySR equations, we consider the one with the lowest MSE (as in Section 6
later). Furthermore, we explore benefits that arise from training on each cloud regime separately and whether
using a different feature set for each regime could ease the transition between regimes.

In general, we find that the PySR equation (except in the cirrus regime) and the 6‐feature NN can reproduce the
distributions quite well (Hellinger distances < 0.05), while the 24‐feature NN shows excellent skill (Hellinger
distances ≤ 0.015). However, all models have difficulty predicting the number of fully cloudy cells in all regimes
(especially in the regimes with fewer cloud condensates).

Focusing first on the predictions of the Xu‐Randall scheme, we find that the distributions exhibit prominent peaks
in each cloud regime. By neglecting the cloud condensate term and equating RH with the regime‐based median,
we can approximately re‐derive these modes of the Xu‐Randall cloud cover distributions in each regime using the
Xu‐Randall Equation 4. With our choice of α= 0.9, this mode is indeed very close (absolute difference at most 8%
cloud cover) to the median relative humidity calculated in each regime. By increasing α, we should therefore be

Figure 3. Predicted cloud cover distributions of selected Pareto‐optimal models evaluated on the DYAMOND data, divided
into four different cloud regimes. The numbers in the upper left indicate the Hellinger distance between the predicted and the
actual cloud cover distributions for each model and cloud regime.
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able to push the mode above 100% cloud cover and thus remove the spurious peak. However, this comes at the
cost of increasing the overall MSE of the Xu‐Randall scheme.

For the PySR equation (and also the 24‐feature NN), the cirrus regime distribution is the most difficult to
replicate. The Hellinger distances suggest that it is the model's functional form, and not its number of features that
limits model performance in the cirrus regime. Indeed, the decrease in the Hellinger distance between the PySR
equation and the 6‐feature NN is larger (0.049) than the decrease between the 6‐ and the 24‐feature NN (0.02).
Technically, the PySR equation has the same features as the 5‐feature and not the 6‐feature NN, but the Hellinger
distances of these two NNs to the actual cloud cover distribution are almost the same (difference of 0.003 in the
cirrus regime). We want to note here that, while the PySR equation features a large Hellinger distance, it actually
achieves its best R2 score (R2= 0.84) in the cirrus regime as the coefficient of determination takes into account the
high variance of cloud cover in the cirrus regime. In the condensate‐rich regimes, the PySR equation is as good as
the 6‐feature NN and even able to outperform it on the stratus regime. To improve the PySR scheme further in
terms of its predicted cloud cover distributions, and combat its underestimation of cloud cover in the cirrus
regime, we now explore the effect of focusing on the regimes individually. By training SFS NNs just like in
Section 5.1.1 but now on each cloud regime separately, we find new feature rankings:

Cirrus regime : qi → RH → T[3.4] → ∂zRH → ∂zzRH[6.4]

Cumulus regime : qi → qc → RH → ∂zRH[4.5] → ∂zzp[5.1]

Deep convective regime : RH → T → ∂zRH → ps[5.5] → ∂zzRH[5.6]

Stratus regime : RH → ∂zRH → ∂zzp → ∂zzRH[5.9] → qc[6.3]

By rerunning PySR within each regime and allowing its discovered equations to depend on the newly found five
most important features, we find equations that are better able to predict the distributions of cloud cover. In
Supporting Information S1, we present one of the equations per regime that strikes a good balance between
performance and simplicity and show the predicted distributions of cloud cover.

As expected, cloud water is not an informative variable in the cirrus regime (with an average rank of 9.5). Based
on qi, RH and T alone, we are able to discover equations that reduce the number of cloud‐free predictions and
improve the distributions for low cloud cover values (Hellinger distances of ≈0.05). We do not attribute these
improvements to new input features, but rather to the ability of the equation to adopt a novel structure. Similarly,
the features qi, qc and RH are sufficient to decrease the Hellinger distance from 0.049 to 0.041 within the cumulus
regime.

In the condensate‐rich regimes (deep convective and stratus), cloud water and/or ice are already present, making
the exact amount of cloud condensates less pertinent. By focusing on the three most significant features RH, T and
∂zRH, we find equations with an enhanced distribution of cloud cover within the deep convective regime (with
Hellinger distances of only 0.02). The equations specific to the deep convective regime display strong nonlin-
earity, with the equation selected for the SI including a fourth‐order polynomial of relative humidity and tem-
perature. While the five most important features of the stratus regime also differ from the SFS NN features of
Section 5.1.1, we were not able to improve upon the Hellinger value of our single PySR equation through
exclusive training within the stratus regime. A notable aspect of the stratus regime is the increased significance of
∂zRH, which is discussed later (see Section 6.2).

While the approach of deriving distinct equations tailored to each cloud regime, emphasizing regime‐specific
features, holds potential for improving predicted cloud cover distributions, the resulting MSE across the entire
data set is lower (≈113 [%]2) compared to our chosen single PySR equation (≈104 [%]2). Moreover, the number
of free parameters increases to 33, which is three times the count of our single PySR equation. Lastly, formulating
distinct equations for each cloud regime requires special attention at the regime boundaries to ensure continuity
across the entire domain. Therefore, we henceforth focus on equations that generalize across cloud regimes.

5.3. Transferability to Different Climate Model Horizontal Resolutions

Designing data‐driven models that are not specific to a given Earth system model and a given grid is challenging.
Therefore, in this section we aim to determine which of our selected Pareto‐optimal ML models are most general
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and transferable. We explore the applicability of our schemes at higher res-
olutions, nowadays also typical for climate model simulations.

To evaluate the performance of our models at higher resolutions, we coarse‐
grain some of the DYAMOND data to horizontal resolutions of ≈20 km
(R2B7) and ≈40 km (R2B6) to complement our coarse‐grained data set at
≈80 km (R2B5). For simplicity, in this section, we omit any coarse‐graining
in the vertical and do not retune the schemes for the higher resolutions. In
Figure 4 we present R2‐values for each resolution for the same models as in
the previous section. We note that the lack of vertical coarse‐graining can
explain the slight decrease in performance on 80 km when compared to the
results depicted in Figure 2.

We observe a clear, almost linear, tendency of all schemes to improve their
R2‐score on the coarse‐grained data sets as we increase the resolution. The
increasing standard deviation σ of cloud cover by ≈1.6% per doubling of the
resolution (with σ ≈ 23.8% at 80 km) is not sufficient to explain this phe-
nomenon. On the one hand, we find these improvements surprising, consid-
ering that the schemes were trained at a resolution of 80 km. On the other
hand, at the low resolution of 80 km, the inputs are averaged over wide
horizontal regions and bear very little information about how much cloud

cover to expect. At higher resolution, large‐scale variables and cloud cover are more closely related. Cloud water
and ice reach larger values and become more informative for cloud cover detection. This is evident in the Xu‐
Randall scheme, which relies heavily on cloud condensates and shows a significant increase in its ability to
predict cloud cover at higher resolutions. Our analysis reveals that the most skillful schemes at 20 km are the 6‐
feature NN and our chosen PySR equation. The 24‐feature NN relies on many first‐ and second‐order vertical
derivatives in its input, so its deteriorated performance could be an artifact of not vertically coarse‐graining the
data in this section.

Overall, the schemes exhibit a noteworthy capacity to be applied at higher resolutions than those used during their
training.

5.4. Transferability to Meteorological Reanalysis (ERA5)

To our knowledge, there is no systematic method to incorporate observations into ML parameterizations for
climate modeling. In this section, we take a step toward transferring schemes trained on SRMs to observations by
analyzing the ability of the Pareto‐optimal schemes to transfer learn the ERA5 meteorological reanalysis from the
DYAMOND set.

To do so, we take a certain number (either 1 or 100) of random locations, and collect the information from the
corresponding grid columns of the ERA5 data over a certain number of time steps in a data set T . Starting from the
parameters learned on the DYAMOND data, we retrain the cloud cover schemes on T and evaluate them on the
entire ERA5 data set. In other words, the free parameters of each cloud cover scheme are retuned on T . The
retuning method is the same as the original training method, the difference being that the initial model parameters
were learned on the DYAMOND data. We can think of T as mimicking a series of measurements at these random
locations, which help the schemes adjust to the unseen data set. Figure 5 shows the MSE of the Pareto‐optimal
cloud cover schemes on the ERA5 data set after transfer learning on data sets T of different sizes.

The first columns of the three panels show no variability because the schemes are applied directly to the ERA5
data without any transfer learning (T = ∅). None of the schemes perform well without transfer learning
(R2 < 0.15), which is expected given the different distributions of cloud ice and water between the DYAMOND
and ERA5 data sets (Figure 1). That being said, the SFS NNs retain their superior performance (MSE ≈ 300 [%]2

without retraining), especially compared to the non‐retrained SFS polynomials, which exhibit MSEs in the range
of 1,375 ± 55 [%]2 and are therefore not shown in Panel c.

For most schemes, performance increases significantly after seeing one grid column of ERA5 data, with the
exception of the SFS NNs with more than 6 features and the GPGOMEA equation. The performance of the
GPGOMEA equation varies greatly between the selected grid columns, and the SFS NNs with many features

Figure 4. Selected Pareto‐optimal models evaluated on DYAMOND data
(11–20 August 2018), coarse‐grained horizontally to three different
resolutions. Only data below an altitude of 21 km is considered.
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appear to underfit the small transfer learning training set. The models with the lowest MSEs are (a) the slightly
more complex of the two PySR equations (median MSE = 148 [%]2); and (b) the SFS NNs with 5 and 6 features
(median MSE = 200 [%]2). While we cannot confirm that fewer features (5–6 features) help with off‐the‐shelf
generalizability of the SFS NNs, they do improve the ability to transfer learn after seeing only a few samples
from the ERA5 data.

After increasing the number of time steps to be included in T to 32 (corresponding to 1 year of our preprocessed
ERA5 data set), the performances of the models start to converge and the SFS NNs with 5 and 6 features and its
large number of trainable parameters outperform the PySR equation (with median ΔMSE ≈ 35 [%]2). From the
last column we can conclude that a T consisting of 100 columns from all available time steps is sufficient for the
ERA5 MSE of all schemes to converge. Remarkably, the order from best‐ to worst‐performing model is exactly
the same as it was in Figure 2 on the DYAMOND data set (in addition, Figure S3 in Supporting Information S1
visually demonstrates the improved spatial distribution of predicted cloud cover by the fully tuned PySR
equation). Thus, we find that the ability to perform well on the DYAMOND data set is directly transferable to the
ability to perform well on the ERA5 data set given enough data, despite fundamental differences between the data
sets. This suggests a notable degree of structural robustness of the cloud cover models.

A useful property of a model is that it is able to transfer learn what it learned over an extensive initial data set after
tuning only on a few samples. We can quantify the ability to transfer learn with few samples in two ways: First, we
can directly measure the error on the entire data set after the model has seen only a small portion of the data (in our
case the ERA5 MSEs of the 1/1‐column). Second, if this error is already close to the minimum possible error of
the model, then few samples are really enough for the model to transfer learn to the new data set (in our case, the
difference of MSEs in the 1/1‐column and the 100/1,368‐column). In terms of the first metric (MSEs in [%]2), the
leading five models are the more complex PySR equation (147.6), the 5‐ and 6‐feature NNs (199.6/199.8), the
simpler PySR equation (216.8), and the 6‐feature polynomial (254.6). In terms of the second metric (difference of
MSEs in [%]2), the top five models are again the more complex PySR equation (86.0), the 6‐, 5‐, and 4‐feature
polynomials (149.1/149.4/150.5), and the simpler PySR equation (152.3). If we add both metrics, weighing them
equally, then the more complex PySR equation has the lowest inability to transfer learn with few samples (233.7),
followed by the simpler PySR equation (369.1) and the 5‐ and 6‐feature SFS NNs (370.5/374.5, where all
numbers have units [%]2). As the more complex PySR equation is leading in both metrics, we can conclude that it
is most able to transfer learn after seeing only one column of ERA5 data, and we further investigate its physical
behavior in the next section.

6. Physical Interpretation of the Best Analytical Scheme
We find that the two PySR equations on the Pareto frontier (see Figure 2) achieve a good compromise between
accuracy and simplicity. Both satisfy most of the physical constraints that we defined in Section 4.1. In this
section, we analyze the (more complex) PySR equation with a lower validation MSE as we showed that it
generalized best to ERA5 data (see Figure 5). We also conclude that the decrease in MSE is substantial enough

Figure 5. Performance of DYAMOND‐trained Pareto‐optimal cloud cover schemes on the ERA5 data set after transfer learning. The labels on the x‐axis denote how
many grid columns taken across how many time steps make up the transfer learning training set. Each setting is run with six different random seeds and the diamond‐
shaped markers indicate the respective medians.
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(ΔMSE = 3.04%2) to warrant the analysis of the (one parameter) more complex equation. The equation for the
case with condensates can be phrased in terms of physical variables as

f (RH, T, ∂zRH, qc, qi) = I1(RH,T) + I2 (∂zRH) + I3 (qc,qi), (10)

where

I1(RH,T) =
def a1 + a2 (RH − RH) + a3 (T − T) +

a4

2
(RH − RH)2 +

a5

2
(T − T)2 (RH − RH)

I2 (∂zRH) =
def a3

6(∂zRH +
3a7

2
)(∂zRH)2

I3 (qc,qi) =
def − 1

qc/a8 + qi/a9 + ϵ
.

To compute cloud cover in the general case, we plug Equation 10 into Equation 6, enforcing the first two physical
constraints (C(X)∈ [0,100]% and in condensate‐free cells C(X) = 0). On the DYAMOND data we find the best
values for the coefficients to be

{a1,…,a9,ϵ} = {0.4435,1.1593, − 0.0145 K− 1,4.06,1.3176 ⋅ 10− 3 K− 2,

584.8036 m,2 km− 1,1.1573 mg/kg,0.3073 mg/kg,1.06}.

Additionally, RH = 0.6025 and T = 257.06 K are the average relative humidity and temperature values of our
training set.

In this section, we use our symbolic model to elucidate the fundamental physical components that facilitate the
parameterization of cloud cover from storm‐resolution data, following the themes outlined in the subsequent
subsections.

6.1. Relative Humidity and Temperature Drive Cloud Cover, Especially in Condensate‐Rich
Environments

The function I1(RH, T ) can be phrased as a Taylor expansion to third order around the point (RH,T) = (RH,T) .
The first coefficient a1 specifies I1's contribution to cloud cover for average relative humidity and temperature
values, that is, a1 = I1 (RH,T) . While C(X) = a1 at (RH,T) if I2 ≈ I3 ≈ 0, the I3‐term dominates when cloud
condensates are absent, setting C(X) to 0. The following two parameters a2 and a3 are the partial derivatives of
Equation 10 at (RH,T) w.r.t. relative humidity and temperature, that is, a2 = (∂I1/∂RH)|(RH,T) and

a3 = (∂I1/∂T)|(RH,T). As a2 is positive, cloud cover generally increases with relative humidity (see Figures 6a and

7a). To ensure PC3 (∂C/∂RH ≥ 0) in all cases, we replace RH with

max{RH,c1 − c2(T − T)2}, (11)

where c1 = RH − a2/a4 ≈ 0.317 and c2 = a5/(2a4) ≈ 1.623 · 10− 4 K− 2. We derive Equation 11 by solving
∂f /∂RH = 0 for RH. The condition for replacing RH triggers in roughly 1% of our samples. It ensures that cloud
cover does not increase when decreasing relative humidity in cases of low relative humidity and average tem-
perature (see Figure 7). Modifying Equation 10 in such a way does not deteriorate its performance on the
DYAMOND data. Figure 7b illustrates how the modification ensures PC3 in an average setting (in particular for
T = T). It would be difficult to apply a similar modification to the NN, which in our case violates PC3 for
RH > 0.95. We can also directly identify another aspect of Equation 10: the absence of a minimum value of
relative humidity, below which cloud cover must always be zero (the critical relative humidity threshold).

Since a3 = (∂I1/∂T)|(RH,T) is negative, cloud cover typically decreases with temperature for samples of the

DYAMOND data set (see Figure 6f). However, I1 does not ensure the PC6 (∂C/∂T ≤ 0) constraint everywhere.
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For instance, in the hot limit limT→∞ I1(RH, T ), whether conditions are entirely cloudy or cloud‐free depends
upon relative humidity (in particular, whether RH > RH).

The coefficient a4 = (∂2I1/∂RH2)|(RH,T) is precisely the curvature of I1 w.r.t. RH, causing the equation to flatten

with decreasing RH (taking Equation 11 into account). It is consistent with the Sundqvist scheme that changes in
relative humidity have a larger impact on cloud cover for larger relative humidity values. The final coefficient a5

of I1 is a third‐order partial derivative of I1 w.r.t. T and RH. More precisely,

a5 = (
∂3I1

∂T2∂RH
)

⃒
⃒
⃒
⃒
(RH,T)

.

Figure 6. Top row: 1D‐ or 2D‐plots of the three terms I1, I2, I3 as functions of their inputs. In Panels (a) and (b), the axis‐values are bound by the respective minima and
maxima in the DYAMOND data set, while those minima/maxima were divided by 5,000 in Panel (c). The vertical black lines indicate the region of values covered by
Panels (d)–(g). Bottom row: Conditional average plots of cloud cover with respect to relative humidity and temperature (Panels d–f) or ∂zRH (Panel g).

Figure 7. Panel (a) Contour plot of ∂RHf as a function of relative humidity and temperature. The contour marks the boundary
where ∂RHf = 0. Panel (b) Predictions of the PySR Equation 10 with and without the modification Equation 11 as a function
of relative humidity. For comparison, the predictions of the sequential feature selection neural network (NN) with 24 features
are shown. The other features are set to their respective mean values.
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The corresponding term becomes important whenever the temperature and relative humidity deviate strongly
from their mean. In the upper or lower troposphere, where temperature conditions differ from the average
tropospheric temperature, the a5‐term either further increases cloud cover in wet conditions (e.g., the tropical
lower troposphere) or decreases it in dry conditions (e.g., in the upper troposphere or over the Sahara). The
contribution of the a5‐term for selected vertical layers is illustrated in the second row of Figure A1. When fit to the
ERA5 data, the coefficients of the linear terms are found to be stable, while the emphasis on the non‐linear terms
is somewhat decreased; a4 is 1.53 and a5 is 2.5 times smaller.

6.2. Vertical Gradients in Relative Humidity and Stratocumulus Decks

The second function I2(∂zRH) is a cubic polynomial of ∂zRH. Its magnitude is controlled by the coefficient a6. If
a6 were 50% smaller (which it is when fit to ERA5 data), it would decrease the absolute value of I2 by 87.5%. We
introduce a prefactor of 1.5 for a7 so that − a7 describes a local maximum of I2 (found by solving I′2 (∂zRH) = 0).
We will now focus on the reason for this distinct peak of I2 ≈ 0.8 at ∂zRH = − a7.

Removing the I2‐term, we find that the induced prediction error is largest, on average, in situations that are (a)
relatively dry (RH ≈ 0.6), (b) close to the surface (z ≈ 1,000 m), (c) over water (land fraction ≈ 0.1), (d) char-
acterized by an inversion (∂zT ≈ 0.01 K/m), and (e) have small values of ∂zRH (∂zRH ≈ − 2 km− 1= − a7; compare
also to the cloud cover peak in Figure 6g). Using our cloud regimes of Section 5.2, we find the average absolute
error is largest in the stratus regime (4% cloud cover). Indeed, by plotting the globally averaged contributions of
I1, I2 and I3 on a vertical layer at about 1,500 m altitude (Figure A1), we find that I2 is most active in regions with
low‐level inversions where marine stratocumulus clouds are abundant (Mauritsen et al., 2019). From this, we can
infer that the SFS NN has chosen ∂zRH as a useful predictor to detect marine stratocumulus clouds and the
symbolic regression algorithm has found a way to express this relationship mathematically. It is more informative
than ∂zT (rank 10 in Section 5.1.1), which would measure the strength of an inversion more directly. Indeed,
stratocumulus‐topped boundary layers exhibit a sharp increase in temperature and a sharp decrease in specific
humidity between the cloud layer to the inversion layer. Studies by Nicholls (1984) and Wood (2012) reveal a
notable temperature increase of approximately 5–6 K and a specific humidity decrease of about 4–5 g/kg. In
ICON's grid with a vertical spacing of ≈300 m at an altitude of 1,000–1,500 m, the decrease in relative humidity
would attain values of ≈− 2.5 km− 1. It is important to note that the vertical grid may not precisely separate the
cloud layer from the inversion layer, making it reasonable to maximize the parameter I2 at a relative humidity
gradient of ∂zRH = − 2 km− 1. Vertical gradients of relative humidity below − 3, km− 1 are extremely sporadic and
confined to the lowest portion of the planetary boundary layer, where the vertical spacing between grid cells can
get very small. In such cases, the attenuating effect of I2 is unlikely to have significant physical causes. In contrast,
vertical relative humidity gradients exceeding 1 km− 1 are common in the marine boundary layer due to evapo-
ration and vertical mixing of moist air in the boundary layer. In this context, I2 generally increases cloud cover
which aligns with the fact that cloud cover is typically 5%–15% greater over the ocean compared to land (Rossow
& Schiffer, 1999). With the estimated values for a6 and a7, relative humidity would need to increase by 10% over a
height of 260 m to increase cloud cover by 10%.

6.3. Understanding the Contribution of Cloud Condensates to Cloud Cover

The third function I3(qc, qi) is always negative and decreases cloud cover where there is little cloud ice or water. It
ensures that PC4 and PC5 are always satisfied. First of all, in condensate‐free cells, ϵ serves to avoid division by
zero while also decreasing cloud cover by 100%. Furthermore, the values of a8 or a9 indicate thresholds for cloud
water/ice to cross to set I3 closer to zero. When tuned to the ERA5 data set, the values for both a8 and a9 are
roughly six times larger, making the equation less sensitive to cloud condensates. As larger values for cloud water
are more common for cloud ice, we already expect I3 to be more sensitive to cases when cloud ice actually does
appear. By comparing the distributions of cloud ice/water at the storm‐resolving scale, we provide a more
rigorous derivation in Appendix B for why a9 should indeed be smaller than a8. A simple explanation is that we
usually find ice clouds in the upper troposphere, where convection is associated with divergence, causing the
clouds to spread out more.

Given that Equation 10 is a continuous function, the continuity constraint PC7 is only violated if and only if the
cloud cover prediction is modified to be 0 in the condensate‐free regime (by Equation 6), and would be positive
otherwise. The value of ϵ dictates how frequently the cloud cover prediction needs to be modified. In the limit
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ϵ → 0 we could remove the different treatment of the condensate‐free case. In our data set, Equation 10 yields a
positive cloud cover prediction in 0.35% of condensate‐free samples. Thus, the continuity constraint PC7 is almost
always satisfied (in 99.65% of our condensate‐free samples).

6.4. Ablation Study Confirms the Importance of Each Term

To convince ourselves that all terms/parameters of Equation 10 are indeed relevant to its skill, we examine the
effects of their removal in an ablation study (Figure 8). We found that for the results to be meaningful, removing
individual terms or parameters requires readjusting the remaining parameters; in a setting with fixed parameters
the removal of multiple parameters often led to better outcomes than the removal of a single one of them. The
optimizers (BFGS and Nelder‐Mead) used to retune the remaining parameters show different success depending
on whether the removal of terms is applied to the equation formulated in terms of normalized or physical features
(the latter being Equation 10). Therefore, each term is removed in both formulations, and the better result is
chosen each time. To ensure robustness of the results, this ablation study is repeated for 10 different seeds on
subsets with 106 data samples.

We find that the removal of any individual term in Equation 10 would result in a noticeable reduction in per-
formance on the DYAMOND data (ΔMSE ≥ 3.4 [%]2 in absolute and (MSEabl − MSEfull)/MSEabl ≥ 3.2% in
relative terms). Even though Figure 6g) suggests a cubic dependence of cloud cover on ∂zRH, it is the least
important term to include according to Figure 8. Applied to the ERA5 data, we can even dispense with the entire I2
term. Furthermore, we find that the quadratic dependence on RH can be largely compensated by the linear terms.
The most important terms to include are those with cloud ice/water and the linear dependence on temperature.
Coinciding with the SFS NN feature sequences in Section 5.1.1, cloud ice (ΔMSE = 96/102 [%]2) is more
important to take into account than cloud water (ΔMSE = 88/63 [%]2), especially for the ERA5 data set in which
cloud ice is more abundant (see Figure 1). More generally, out of the functions I1, I2, I3 we find I1(RH, T ) to be
most relevant (ΔMSE = 1,300/763 [%]2), followed by I3(qc, qi) (ΔMSE = 119/123 [%]2) and lastly I2(∂zRH)
(ΔMSE = 18/0 [%]2), once again matching the order of features that the SFS NNs had chosen.

7. Conclusion
In this study, we derived data‐driven cloud cover parameterizations from coarse‐grained global storm‐resolving
simulation (DYAMOND) output. We systematically populated a performance × complexity plane with inter-
pretable traditional parameterizations and regression fits on one side and high‐performing NNs on the other.
Modern symbolic regression libraries (PySR, GPGOMEA) allow us to discover interpretable equations that
diagnose cloud cover with excellent accuracy (R2 > 0.9). From these equations, we propose a new analytical
scheme for cloud cover (found with PySR) that balances accuracy (R2 = 0.94) and simplicity (10 free parameters
in the physical formulation). This analytical scheme satisfies six out of seven physical constraints (although the
continuity constraint is violated in 0.35% of our condensate‐free samples), providing the crucial third criterion for
its selection. In a first evaluation, the (5‐feature) analytical scheme was on par with the 6‐feature NN in terms of
reproducing cloud cover distributions (Hellinger distances < 0.05) in condensate‐rich cloud regimes, yet
underestimating cloud cover more strongly in condensate‐poor regimes. While discovering distinct equations in
each cloud regime can improve the Hellinger distances, both the overall complexity and MSE of a combined

Figure 8. Ablation study of Equation 10 on the DYAMOND and ERA5 data sets. The removal of the function I1 leads to a
very large decrease of mean squared error (MSE) (of 1,300/763 [%]2) on the DYAMOND/ERA5 data sets and is therefore not
shown.
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piecewise equation increase. This supports choosing a single continuous analytical scheme that generalizes across
cloud regimes. When applied to higher resolutions than their training data we find that the cloud cover schemes
further improve their performance. This finding opens up possibilities for leveraging their predictive capabilities
in domains with increased resolution requirements.

In addition to its interpretability, flexibility and efficiency, another major advantage of our best analytical scheme
is its ability to adapt to a different data set (in our case, the ERA5 reanalysis product) after learning from only a
few of the ERA5 samples in a transfer learning experiment. Due to the small amount of free parameters and the
initial good fit on the DYAMOND data, our new analytical scheme outperformed all other Pareto‐optimal
models. We found that as the number of samples in the transfer learning sets increases, the models converged
to the same performance rank on the ERA5 data as on the DYAMOND data, indicating strong similarities in the
nature of the two data sets that could make which data set serves as the training set irrelevant. In an ablation study,
we found that further reducing the number of free parameters in the analytical scheme would be inadvisable; all
terms/parameters are relevant to its performance on the DYAMOND data. Key terms include a polynomial
dependence on relative humidity and temperature, and a nonlinear dependence on cloud ice and water.

Our SFS approach with NNs revealed an objectively good subset of features for an unknown nonlinear function:
relative humidity, cloud ice, cloud water, temperature and the vertical derivative of relative humidity (most likely
linked to the vertical variability of cloud cover within a grid cell). While the first four features are well‐known
predictors for cloud cover, PySR also learned to incorporate ∂zRH in its equation. This additional dependence
allows it to detect thin marine stratocumulus clouds, which are difficult, if not impossible to infer from exclusively
local variables. These clouds are notoriously underestimated in the vertically coarse climate models (Nam
et al., 2012). In ICON this issue is somewhat attenuated by multiplying, and thus increasing relative humidity in
maritime regions by a factor depending on the strength of the low‐level inversion (Mauritsen et al., 2019). Using
symbolic regression, we thus found an alternative, arguably less crude approach, which could help mitigate this
long‐standing bias in an automated fashion. However, we need to emphasize that in particular shallow convection
is not yet properly resolved on kilometer‐scale resolutions. Therefore, shallow clouds such as stratocumulus
clouds are still distorted in the storm‐resolving simulations we use as the source of our training data (Stevens
et al., 2020). To properly capture shallow clouds it could be advisable to further increase the resolution of the
high‐resolution model, training on coarse‐grained output from targeted large‐eddy simulations (Stevens
et al., 2005) or observations.

A crucial next step will be to test the cloud cover schemes when coupled to Earth system models, including ICON.
We decided to leave this step for future work for several reasons. First, our focus was on the equation discovery
methodology and the analysis of the discovered equation. Second, our goal was to derive a cloud cover scheme
that is climate model‐independent. Designing a scheme according to its online performance within a specific
climate model decreases the likelihood of inter‐model compatibility as the scheme has to compensate the climate
model's parameterizations' individual biases. For instance, in ICON, the other parameterizations would most
likely need to be re‐calibrated to adjust for current compensating biases, such as clouds being “too few and too
bright” (Crueger et al., 2018). Third, the metrics used to validate a coupled model remain an active research area,
and at this point, it is unclear which targets must be met to accept a new ML‐based parameterization. That being
said, the superior transferability of our analytical scheme to the ERA5 reanalysis data not only suggests its
applicability to observational data sets, but also that it may be transferable to other Earth system models.

In addition to inadequacies in our training data (see above), which somewhat exacerbate the physical interpre-
tation of the derived analytical equations, our current approach has some limitations. Symbolic regression li-
braries are limited in discovering equations with a large number of features. In many cases, five features are
insufficient to uncover a useful data‐driven equation, requiring a reduction of the feature space's dimensionality.
To measure model complexity, we used the number of free parameters, disregarding the number of features and
operators. Although the number of operators in our study was roughly equivalent to the number of parameters, this
may not hold in more general applications and the complexity of individual operators would need to be specified
(as in Appendix C).

Our approach differs from similar methods used to discover equations for ocean subgrid closures (Ross
et al., 2023; Zanna & Bolton, 2020) because we included nonlinear dependencies without assuming additive
separability, instead fitting the entire equation non‐iteratively. By simply allowing for division as an operator in
our symbolic regression method, we found rational nonlinearities in the equation whose detection would already
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require modifications such as Kaheman et al. (2020) to conventional sparse regression approaches. Despite our
efforts, the equation we found is still not as accurate as an NN with equivalent features in the cirrus‐like regime
(the Hellinger distance between the analytical scheme and the DYAMOND cloud cover distribution was more
than twice as large as for the NN). Comparing the partial dependence plots of the equation with those of the NN
could provide insights and define strategies to further extend and improve the equation, while reducing the
computational cost of the discovery. There are various methods available for utilizing NNs in symbolic regression
for more than just feature selection, one of which is AIFeynman (Udrescu et al., 2020). While AIFeynman is
based on the questionable assumption that the gradient of an NN provides useful information, a direct prediction
of the equation using recurrent NNs presents a promising avenue for improved symbolic regression (Petersen
et al., 2021; Tenachi et al., 2023).

Nonetheless, our simple cloud cover equation already achieves high performance. Our study thus underscores that
symbolic regression can complement deep learning by deriving interpretable equations directly from data,
suggesting untapped potential in other areas of Earth system science and beyond.

Appendix A: Global Maps of I1, I2, I3
In this section, we plot average function values for the three terms I1, I2, and I3 of Equation 10. We focus on the
vertical layer roughly corresponding to an altitude of 1,500 m to analyze if one of the terms would detect thin
marine stratocumulus clouds. Due to their small vertical extent, these clouds are difficult to pick up on in coarse
climate models, which constitutes a well‐known bias. To compensate for this bias, the current cloud cover scheme
of ICON has been modified so that relative humidity is artificially increased in low‐level inversions over the
ocean (Mauritsen et al., 2019).

Analyzing Figure A1, we find that the regions of high I2‐values correspond with regions typical for low‐level
inversions and low‐cloud fraction (Mauritsen et al., 2019; Muhlbauer et al., 2014). These I2‐values compen-
sate partially negative I1‐ and I3‐values in low‐cloud regions of the Northeast Pacific, Southeast Pacific, Northeast
Atlantic, and the Southeast Atlantic. The I3‐term decreases cloud cover over land and is mostly inactive over the
oceans due to the abundancy of cloud water. The I1‐term is particularly small in the dry and hot regions of the
Sahara and the Rub' al Khali desert and largest over the cold poles. The a5‐term is the only term in I1 that cannot be
explained as a linear or a curvature term. In the upper troposphere, the term is negative due to relatively cold and
dry conditions. In August, temperatures are coldest in the southern hemisphere, so the term has a strong negative

Figure A1. The first row shows maps of I1(RH, T ), I2(∂zRH) and I3(qc, qi) on a vertical layer with an average height of 1,490 m. In the second row we zoom in on the
contribution of the term in I1 corresponding to the a5‐coefficient on three different height levels (roughly at 11 km, 4 km, 320 m). All plots are averaged over 10 days
(11–20 August 2016). The data source is the coarse‐grained three‐hourly DYAMOND data.
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effect, especially over the South Pole. In the middle troposphere, temperatures are near the average of 257 K,
weakening the term overall. Negative patches in the subtropics are due to the dry descending branches of the
Hadley cell. The lower troposphere is relatively warm, especially in the tropics, resulting in a large positive a5‐
term under humid conditions, and a negative term under dry conditions.

Appendix B: The Sensitivity of Cloud Cover to Cloud Water and Ice
In Equation 10, cloud cover is more sensitive to cloud ice than cloud water. In this section, we show that we can
explain this difference in sensitivity from the storm‐scale distributions of cloud water and ice alone (Figure B1).
On storm‐resolving scales, a grid cell is fully cloudy if cloud condensates qt exceed a small threshold a > 0.
Otherwise it is set to be non‐cloudy. We can thus express the expected cloud cover as the probability of qt
exceeding the threshold a

E[C] = P[qt > a] =∫
∞

a
fqt(qt) dqt, (B1)

where fx is the probability density function of some variable x. As we can express cloud condensates as a sum of
cloud water qc and cloud ice qi, we can also derive fqt from fqc and fqi by fixing qt and integrating over all potential
values for qc

fqt(qt) =∫
qt

0
fqc(z)fqi(qt − z) dz. (B2)

In the following, we introduce the subscript s as a placeholder for either liquid or ice. According to Figure B1, the
storm‐resolving cloud ice/water distributions feature distinct peaks at qs = 0, which can be modeled by weighted
dirac‐delta distributions. For qs > 0, we can approximate fqc and fqi with exponential distributions. After
normalizing the distributions so that their integrals over qs ≥ 0 yield 1 we arrive at

fqs(qs) = (λs exp (− λsqs) + wsδ(qs))/(ws/2 + 1).

By rephrasing ws in terms of λs and μs, the mean of fqs, we get

fqs(qs) = λsμs (λs exp (− λsqs) + (− 2 + 2/(λsμs))δ(qs)). (B3)

Figure B1. The distributions of cloud water and cloud ice on storm‐resolving scales (2.5 km DYAMOND Winter data). For
positive values we approximate these distributions very loosely with exponential distributions.
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By plugging in Equations B2 and B3 into Equation B1 and letting a→ 0+we find the expected cloud cover to be a
function of the shape parameters λs and the means μs for cloud water and ice

E[C] = − 3λiλcμiμc + 2λiμi + 2λcμc. (B4)

We can relate this expression to a8 and a9 by expanding I3 to first order around the origin

I3 (qc,qi) ≈ − 1/ϵ + qc/ (a8ϵ2) + qi/ (a9ϵ2) − qcqi/ (a8a9ϵ3). (B5)

By comparing Equations B4 and B5 we arrive at the following analogy for qs ≈ μs:

2λl ≈ 1/ (a8ϵ2) and 2λi ≈ 1/ (a9ϵ2).

We conclude that the larger the shape parameter, that is, the faster the distribution tends to zero, the smaller we
expect the associated parameter to be. Based on Figure B1 we have λi > λc, which explains why a9 is smaller than
a8. In other words, why I3 is more sensitive to cloud ice than cloud water.

Appendix C: PySR Settings
First of all, we do not restrict the number of iterations, and instead restrict the runtime of the algorithm to ≈8 hr.
We choose a large set of operators O to allow for various different functional forms (while leaving out non‐
continuous operators). To aid readability we show the operators applied to some (x,y)∈R2 which we denote
by superscripts. To account for the different complexity of the operators, we split O into four distinct subsets

O(x,y)
1 = {x ⋅ y,x + y,x − y, − x}

O(x,y)
2 = {x/y,|x|,

̅̅̅
x

√
,x3,max(0,x)}

O(x,y)
3 = {exp(x),ln(x), sin(x), cos(x), tan(x), sinh(x), cosh(x), tanh(x)}

O(x,y)
4 = {xy,Γ(x),erf(x),arcsin(x),arccos(x),arctan(x),arsinh(x),arcosh(x),artanh(x)}

of increasing complexity. The operators in O2/O3/O4 are set to be 2/3/9 times as complex as those in O1. In this
manner, for instance x3 and (x · x) · x have the same complexity. Furthermore, we assign a relatively low
complexity to the operators in O3 as they are very common and have well‐behaved derivatives. With the factor of
9, we strongly discourage operators in O4. We expect that for every occurrence of a variable in a candidate
equation it will also need to be scaled by a certain factor. We do not want to discourage the use of such constant
factors or the use of variables themselves and leave the complexity of constants and variables at their default
complexity of one.

We obtain the best results when setting the complexity of the operators inO1 to 3 and training the PySR scheme on
5,000 random samples. Other parameters include the population size (set to 20) and the maximum complexity of
the equations that we initially set to 200 and reduced to 90 in later runs.

Appendix D: Selected Symbolic Regression Fits
This section lists all equations found with the symbolic regression libraries GP‐GOMEA or PySR that are
included in Figure 2, ranked in increasing MSE order. In brackets we provide the MSE/number of parameters. We
list the equations according to their MSE. The equations that lie on the Pareto frontier are highlighted in bold:
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1) PySR [103.95/11] :

f (RH,T,∂zRH,qc,qi) = 203RH2 + (0.06588RH − 0.03969)T2 − 33.87RHT + 4,224.6RH

+18.9586T − 2,202.6 + (2 ⋅ 1010∂zRH + 6 ⋅ 107)(∂zRH)
2
− 1/(8,641qc + 32,544qi + 0.0106)

2) PySR [104.26/19] :

f (RH,T,∂zRH,qc,qi) = (1.0364RH − 0.6782)(0.0581T − 16.1884)(− 44,639.6∂zRH + 1.1483T − 262.16)

+171.963RH − 1.4705T + 158.433(RH − 0.60251)2 + (∂zRH)2 (2 ⋅ 1011qc − 8 ⋅ 107RH + 7 ⋅ 107)

+316.157 + 93,319qi − 1/ (12,108qc + 39,564qi + 0.0111)

3) PySR [106.52/12] :

f (RH,T,∂zRH,qc,qi) = (57.2079RH − 34.4685)(3.0985RH + 73.1646(0.0039T − 1)2 − 1.8669)

+123.175RH − 1.4091T + 1.5 ⋅ 107(∂zRH)2 (10,619qc − 4.9155RH + 4.7178) + 333.1

− 1/ (10,367qc + 35,939qi + 0.0111)

4) PySR [106.95/11] :

f (RH,T,∂zRH,qc,qi) = 19.3885(3.0076RH − 1.8121)(3.2825RH + 73.1646(0.0039T − 1)2 − 1.9777)

+118.59RH − 1.423T + 1.5 ⋅ 107(3.0125 − 1.0129RH)(∂zRH)2 + 339.2 − 1/(9,325qc + 34,335qi
+0.0109)

5) PySR [106.99/10] :

f (RH,T,∂zRH,qc,qi) = (58.189RH − 35.0596)(3.3481RH + 73.1646(0.0039T − 1)2 − 2.0172)

+116.873RH − 1.4211T + 3.6 ⋅ 107(∂zRH)
2
+ 339.9 − 1/(9,237qc + 34,136qi + 0.0109)

6) PySR [111.76/15] :

f (RH,T,∂zRH,qc,qi) = (3.2665RH − 2.9617)(0.0435T − 9.0274)(16,073.2∂zRH + 0.3013T − 68.4342)

97.5754RH − 0.6556T + 175 + 123,823qi − 1/ (9,853qc + 36,782qi + 0.0112)

7) GP‐GOMEA [121.89/13] :

f (RH,T,qc,qi) = 8.459 exp(2.559RH) − 33.222 sin(0.038T + 109.878) + 24.184

− sin(3.767
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|98,709qi − 0.334|

√
)/ (30,046qi + 5,628qc + 0.01)

8) GP‐GOMEA [136.64/11] :

f (RH,T,qc,qi) = (8.65RH − 0.22T − 93.14)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|0.62T − 414.23|

√
+ 2,368 − 1/ (28,661qi + 4,837qc + 0.01)

9) GP‐GOMEA [159.80/9] :

f (RH,qc,qi) = 0.009e8.725RH + 12.795 log(229,004qi + 0.774( e11,357qc − 1)) − 178,246qc + 66

10) GP‐GOMEA [161.45/12] :

f (RH,T,qc,qi) = (0.028e6.253RH + 5RH − 0.076T + 4)/ (183,894qi + 0.73e6,565qc − 91,207qi − 0.62) + 92.3

Note that the assessed number of parameters is based on a simplified form of the equations in terms of its
normalized variables. The amount of parameters in a given equation is at least equal to the assessed number of
parameters minus one (accounting for the zero in the condensate‐free setting).

Data Availability Statement
The cloud cover schemes and analysis code are preserved (Grundner, 2023). DYAMOND data management was
provided by the German Climate Computing Center (DKRZ) and supported through the projects ESiWACE and
ESiWACE2. The coarse‐grained model output used to train and evaluate the NNs amounts to several TB and can
be reconstructed with the scripts provided in the GitHub repository.
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