elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Active Learning for Cyber Attack Detection on Unlabeled URLs

Moebius, Max (2024) Active Learning for Cyber Attack Detection on Unlabeled URLs. Masterarbeit, Friedrich Schiller University Jena.

Dies ist die aktuellste Version dieses Eintrags.

[img] PDF
2MB

Kurzfassung

Machine learning techniques require a large amount of labeled data for training purposes. However, existing labeled datasets are outdated, and cyber-attacks are becoming more complex and sophisticated. This increases the need to use active learning techniques that constantly label new unknown data patterns, which might contain signatures of zero-day attacks (unknown new attacks with no preliminary signatures). Various techniques can accomplish this task, including blacklisting, rule-based, or machine-learning approaches. This thesis focuses on exploring the essential steps of a machine-learning approach, particularly in the domain of Active Learning. The Data Preprocessing step combines various approaches from related work. Seven methods are compared for Feature Extraction, ranging from heuristic approaches to Natural Language Processing. K-fold cross-validation is used to validate the extracted features and the selected Classifier. The machine learning classifier Random Forest and Stochastic Gradient Descent are utilized. Incremental Active Learning and Lifelong learning are utilized, and four different approaches are employed, including pool-based and stream-based sampling, Query-by-Committee, and Cluster Sampling. The thesis mainly employs probabilistic query strategies. Experimental results of different approaches are presented and discussed in their usability with Active Learning. Finally, future work is presented to highlight any potential avenues for further research.

elib-URL des Eintrags:https://elib.dlr.de/202848/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Active Learning for Cyber Attack Detection on Unlabeled URLs
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Moebius, MaxNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:31 Januar 2024
Erschienen in:Active Learning for Cyber Attack Detection on Unlabeled URLs
Open Access:Ja
Seitenanzahl:102
Status:veröffentlicht
Stichwörter:Machine learning, active learning, Malicious URL, Incremental learning
Institution:Friedrich Schiller University Jena
Abteilung:Computer Vision Group, Faculty of Mathematics and Computer Science
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D KIZ - Künstliche Intelligenz
DLR - Teilgebiet (Projekt, Vorhaben):D - CausalAnomalies
Standort: Jena
Institute & Einrichtungen:Institut für Datenwissenschaften
Hinterlegt von: Bouhlal, Badr-Eddine
Hinterlegt am:21 Feb 2024 10:52
Letzte Änderung:26 Feb 2024 12:14

Verfügbare Versionen dieses Eintrags

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.