
Active Learning for Cyber Attack
Detection on Unlabeled URLs

Master Thesis im Fach Informatik

vorgelegt von

Max Möbius

angefertigt am

Lehrstuhl für Digitale Bildverarbeitung

Fakultät für Mathematik und Informatik

Friedrich-Schiller-Universität Jena

in Zusammenarbeit mit

DLR Institute for Data Science

07743 Jena

Germany

Gutachter: Prof. Dr.-Ing. Joachim Denzler

Betreuer: Badr-Eddine Bouhlal M.Sc, Dr. Clemens-Alexander Brust

Beginn der Arbeit: 17.07.2023

Ende der Arbeit: 31.01.2024

Kurzzusammenfassung

Für Techniken des maschinellen Lernens ist eine große Menge an gekennzeichne-

ten Daten für Trainingszwecke erforderlich. Die vorhandenen markierten Datensätze

sind jedoch veraltet, und die Cyberangriffe werden immer komplexer und ausgefeil-

ter. Dies erhöht den Bedarf an Active Learning, das eine ständige Kennzeichnung

neuer unbekannter Datenmuster ermöglicht, die Signaturen von Zero-Day-Attacks

(unbekannte neue Angriffe ohne vorherige Signaturen) enthalten könnten. Diese

Aufgabe kann mit verschiedenen Techniken erfüllt werden, darunter Blacklisting,

regelbasierte oder maschinelle Lernverfahren. Diese Arbeit konzentriert sich auf die

Erforschung der wesentlichen Schritte eines maschinellen Lernansatzes, insbesondere

im Bereich des aktiven Lernens. Der Schritt der Datenvorverarbeitung kombiniert

verschiedene Ansätze aus verwandten Arbeiten. Für die Merkmalsextraktion wer-

den sieben Methoden verglichen, die von heuristischen Ansätzen bis zur natürlichen

Sprachverarbeitung reichen. Die K-fache Kreuzvalidierung wird zur Validierung der

extrahierten Merkmale und des ausgewählten Klassifikators verwendet. Es werden

die maschinellen Lernklassifikatoren Random Forest und Stochastic Gradient De-

scent verwendet. Incremental Active Learning und Lifelong learning werden einge-

setzt, und vier verschiedene Ansätze werden verwendet, darunter Pool-basiertes und

Stream-basiertes Sampling, Query-by-Committee und Cluster Sampling. In dieser

Arbeit werden hauptsächlich probabilistische Query Strategien verwendet. Die ex-

perimentellen Ergebnisse der verschiedenen Ansätze werden vorgestellt und in ihrer

Verwendbarkeit mit Active Learning diskutiert. Abschließend wird die zukünftige

Arbeit vorgestellt, um mögliche Wege für weitere Forschung aufzuzeigen.

Abstract

Machine learning techniques require a large amount of labeled data for training

purposes. However, existing labeled datasets are outdated, and cyber-attacks are

becoming more complex and sophisticated. This increases the need to use active

learning techniques that constantly label new unknown data patterns, which might

contain signatures of zero-day attacks (unknown new attacks with no preliminary

signatures). Various techniques can accomplish this task, including blacklisting,

rule-based, or machine-learning approaches. This thesis focuses on exploring the

essential steps of a machine-learning approach, particularly in the domain of Active

Learning. The Data Preprocessing step combines various approaches from related

work. Seven methods are compared for Feature Extraction, ranging from heuris-

tic approaches to Natural Language Processing. K-fold cross-validation is used to

validate the extracted features and the selected Classifier. The machine learning

classifier Random Forest and Stochastic Gradient Descent are utilized. Incremental

Active Learning and Lifelong learning are utilized, and four different approaches are

employed, including pool-based and stream-based sampling, Query-by-Committee,

and Cluster Sampling. The thesis mainly employs probabilistic query strategies.

Experimental results of different approaches are presented and discussed in their

usability with Active Learning. Finally, future work is presented to highlight any

potential avenues for further research.

Contents

1 Introduction 9

1.1 Motivation . 9

1.2 Active Learning on unlabeled URLs 10

1.3 Related work . 11

1.4 Overview . 15

2 Background 17

2.1 Uniform Resource Locators . 17

2.2 URL Attack Techniques . 18

2.2.1 Defacement URL Attacks . 18

2.2.2 Malware URL Attacks . 19

2.2.3 Phishing URL Attacks . 19

2.2.4 Spam URL Attacks . 20

2.3 Malicious URL Detection . 20

2.3.1 Blacklisting and Heuristic/Rule-based Approach 21

2.3.2 Machine Learning Approaches 22

2.4 Classical Feature Extraction . 23

2.4.1 URL Feature Categories . 23

2.4.2 Extraction Technique . 23

2.5 Natural Language Feature Extraction 23

2.5.1 Natural Language Processing (NLP) 23

2.5.2 Word Vectorization / Word Embedding 24

2.5.3 Transformer . 25

2.6 Evaluation . 27

2.6.1 Dataset Splitting . 27

2.6.2 Cross-Validation . 27

2.7 Active Learning . 28

2.7.1 Uncertainty Sampling . 30

2.7.2 Query-by-Committee . 33

2.7.3 Incremental Active Learning 34

2.7.4 Lifelong Learning . 34

2.8 Clustering . 35

2.8.1 K-Medoids Clustering . 35

3 Methodology 39

3.1 Ideas . 39

3.2 Implementation . 40

3.2.1 Preprocess datasets . 41

3.2.2 Feature Extraction . 41

3.2.3 Machine Learning . 46

3.2.4 Incremental Active Learning 47

3.2.5 Lifelong Learning . 48

4 Experimental Results and Evaluation 51

4.1 Settings . 51

4.2 Datasets . 52

4.3 Dataset Preprocessing . 52

4.4 First Active Learning Experiment . 54

4.4.1 Additional Information . 56

4.4.2 Pool-based Sampling . 59

4.5 Second Active Learning Experiment 63

4.5.1 Additional Information . 65

4.5.2 Pool-based Sampling . 65

4.5.3 Stream-based Sampling . 70

4.5.4 Query-by-Committee . 72

4.5.5 Clustering . 74

4.6 Discussion . 77

5 Conclusions 83

6 Future work 87

6.1 Data Preprocessing . 87

6.2 Feature Extraction . 88

6.3 Machine Learning . 88

6.4 Incremental Active- and Lifelong Learning 89

Bibliography 91

List of Figures 99

List of Tables 101

Acknowledgment

Firstly, I would like to express my gratitude to Prof. Dr.-Ing. Joachim Denzler for

providing me with the opportunity to write this thesis. I would also like to extend

my thanks to my advisors at the German Aerospace Center (DLR) Jena, namely

Badr-Eddine Bouhlal M.Sc and Dr. Clemens-Alexander Brust. Their guidance and

feedback were instrumental in the successful completion of this project.

Furthermore, I am grateful to my family and friends for supporting me throughout

the process and for their patience in reading over my thesis.

I want to mention that I utilized Grammarly to enhance the quality of my thesis.

It was not used for any other purpose, such as text generation.

Chapter 1

Introduction

The use of web technology has grown considerably over the years, offering many

possibilities with the fast-growing number of web pages available. However, this has

also led to an increase in malicious pages that aim to extract information from a

user’s system or even provide access to the user’s system itself. These pages mainly

target personal information or account credentials and can even use unsuspecting

users to gain access to sensitive data within their company. [WWXZ22, HY23, PP22]

With the increasing popularity of social networking, online shopping, and other

parts of the internet, more people are using the web, making it a prime target

for hackers. Therefore, cybersecurity plays a crucial role in ensuring the safety of

users. Implementing systems that can identify malicious URLs with certainty and

inform users before accessing bad web pages is essential. By doing so, everyone

can surf the internet safely and enjoy its benefits without fearing cyber threats.

[WWXZ22, HY23, PP22]

1.1 Motivation

There are different types of harmful URLs, such as Defacement, Malware, Phishing,

Spam, and others. In the past, a technique called “blacklisting” was commonly used

to detect malicious URLs. This technique involves creating lists of malicious URLs

and triggers a warning signal if a user clicks on any of them. [WWXZ22, HY23]

9

Chapter 1 Introduction

Machine learning has become increasingly popular in recent times for identifying

malicious URLs. In this process, URLs are first preprocessed and transformed into

features. Subsequently, the machine learning model learns to recognize the features

and characteristics of malicious URLs. Based on this learning, the model assigns

labels of either “malicious” or “benign” to URLs. [WWXZ22]

Hackers are now changing the structure of URLs to avoid detection, which can make

it difficult for machine learning models trained on URLs to detect newly appearing

malicious URLs. However, “Active Learning” can help prevent this issue. It has

two goals: first, to locate the most uncertain instances from the unlabeled dataset

for a machine learning model, which reduces the number of instances that need to

be labeled. Second, these instances can be used to improve the model for malicious

URL detection. An algorithm searches the data to find the URLs that are most

uncertain to label for the model, which are considered the “best” URLs. The model

is then additionally fitted with this selected data. [BBK+22]

“Incremental Active Learning” is a process that enables continuous learning from

a data stream. The process involves a cycle of data selection and data fitting.

With each cycle, the model becomes more fitted to the new data and the next data

selection can be more specific to the already improved model. This allows the model

to continuously improve as new data is provided. [BBK+22]

1.2 Active Learning on unlabeled URLs

Our main goal is to create active learning algorithms that enhance machine learning

models with limited data to achieve high-accuracy rates. Such a model and active

learning algorithm can be utilized to identify the most uncertain URLs from a large

pool of unlabeled data to improve the model. By doing so, the pool of unlabeled

URLs is reduced to the most significant ones, thereby reducing the workload of

labeling the URLs by a human expert.

To achieve this, we need to establish an optimal pipeline that involves preprocessing

the data, extracting the relevant features from the URLs, using a machine learning

model to classify the data, and then using active learning to improve the model’s

performance.

10

1.3 Related work

The used datasets consist of labeled URLs that are preprocessed into features. It is

important for the model to perform well even when working with unlabeled data.

We test datasets with binary and multiple classes/labels and do not preprocess any

class imbalance in the datasets.

1.3 Related work

This section reviews work that detects malicious URLs with machine learning and

active learning. We will also mention similar methods used for a different task.

There are various papers about malicious URL detection with machine learning.

They typically cover data preprocessing, feature extraction (or embedding creation),

and machine learning. However, some parts are not included in every paper or

explained further. Some also include active learning, which extends the machine

learning process.

Preprocessing data or, especially for this task URLs, can be an important basis for

optimal machine learning. The substrings “http://” and “https://” can be removed

because they are a part of the URL protocol and therefore have only a little impact

on detecting malicious URLs. The corresponding paper also mentions word segmen-

tation. By using statistically more frequently appearing symbols in the context of

URLs, we can segment the words of a URL from each other. The URLs are then

truncated to a maximal length of 30 words, shorter URLs are filled up with 0s.

[WWXZ22]

In [GYR+21], it is mentioned that effective preprocessing and the right classifier

selection highly affect the accuracy of a machine learning model. The data prepro-

cessing cleans the raw data and delivers more relevant data. Raw data may contain

missing values, outliers, and unnecessary features which can lead to inaccurate re-

sults. Therefore, these entries are removed. Additionally, entries with infinite or

NaN values are replaced with the mean value to ensure accuracy in the data.

The authors of [VBB23] discuss other preprocessing steps. Removing the string

after the “?” character can be important. It contains the query parameter and can

be noisy and without meaningful information. The URLs are additionally truncated

11

Chapter 1 Introduction

to 128 characters because there is no actual improvement in machine learning with

longer URLs.

All three papers discuss different steps for preprocessing the URLs. They share

the same target, reducing URLs to the important features, to reduce the impact of

inaccurate assumptions.

There are multiple ways to detect malicious URLs, but this thesis focuses more on

intrusion detection. There, a malicious URL is only detected, and another system or

a human needs to take action. Two different types of techniques can be employed,

blacklisting and heuristic approaches or machine learning approaches. In the context

of this thesis, machine learning approaches are more suitable and commonly used

today. They involve extracting features from the URLs, which are then used to train

models to detect malicious URLs. [CYRR21, MRL+16a, LBK21]

[PKKG10] presents the method “PhishNet”. It combines a heuristic approach with

blacklisting. The first component proposes five heuristics to enumerate simple com-

binations of known phishing sites to discover new phishing URLs. The second does

malicious URL detection with a blacklisting dataset of nearly 18.000 phishing URLs.

For machine learning, different types of feature extraction approaches are utilized.

One approach captures different heuristics, such as URL length, hostname length, or

special character count. More advanced techniques, like natural language processing

(NLP), are sometimes also utilized. The authors of [CYRR21] have decided to

extract lexical and host features using heuristics. The URL length, hostname length,

number of digits or letters, IP address presence, and URL abbreviation are extracted

there. This data preprocessing and active learning steps are also used in our thesis.

[MRL+16a] utilized lexical features for detection purposes. CFSSubsetEval and Info-

gain were employed as feature selection algorithms. From 79 features, the best ones

for different labels are calculated (Classes: Spam, Phishing, Malware, Defacement

and All). There, machine learning without active learning is used.

The authors of [LBK21] implemented malicious URL detection using NLP and ma-

chine learning. TF-IDF-, Count- and Hash Vectorization is used for feature extrac-

tion. The corresponding features are then used for training on standard models

(k-Nearest-Neighbors, Decision Tree, Random Forest and Logistic Regression).

12

1.3 Related work

[VV19] addresses the same subject of detecting malicious URLs using TF-IDF,

Count, and Hash Vectorization for feature extraction and machine learning with

several models (Random Forest, Naive Bayes, and Logistic Regression).

Another paper ([JA23]) performs phishing URL detection with heuristical feature

extraction, followed by processing them through a BERT transformer. First, they

extracted some lexical and host features from the URLs, and then they processed the

URLs for a second time using a BERT transformer, which is based on a pre-trained

model called “bert-base-uncased”. The transformer tokenizes the URLs and con-

verts them to BERT embeddings, that contain more information than usual feature

vectors. The researchers then combined the URL features and the embeddings and

trained different models (Long-term Recurrent Convolutional Network, Character

level Convolution Neural Network, and BERT).

Related work with blacklisting and heuristic approaches appears less often today,

maybe only in combination with machine learning. The machine learning approaches

that were explained cover nearly every common approach used. The papers shown

are only examples because there is more work on the same task with similar methods.

After a model has been trained, it can be utilized for detection purposes. Active

learning can then be applied to recognize the most relevant instances from an unla-

beled pool, which can be used to improve the pre-trained model. [Set09]

A commonly cited paper for active learning and further techniques is [Set09].

There, the different types of query strategies, like pool-based and stream-based

sampling, are shown, as well as query strategies, like Uncertainty Sampling, Query-

By-Committee, or Expected Model Change.

The paper referred to as [CYRR21] also employs active learning. First, several mod-

els (Adaboost, Decision Tree, Gradient Boosting, Logistic Regression, and Random

Forest) are trained and tested. To enhance the Logistic Regression model through

active learning, they implemented Query-by-Committee (QBC). However, they did

not define any models for the committee in QBC.

The authors of [PP22] work with randomized active learning on URL data. The

utilized machine learning model is not mentioned, but different Sample sizes are

compared.

13

Chapter 1 Introduction

In the article [SACAF21], different query strategies are presented. These include

Uncertainty- (Least Confident), Margin- and Entropy Sampling, as well as Vote

Entropy-, Consensus Entropy- and Max Disagreement Sampling for Query-by-

Committee. Experiments were accomplished on image data. “Res-Net-50” was

used for feature extraction and an SVM model was trained and improved with ac-

tive learning. All six previously shown sampling methods are tested. The model

accuracy results started by 20% to 60% and were improved up to 70%.

[APH22]), which works with image data too, is comparing Random Sampling, Mar-

gin Sampling, Coreset, and a more complex strategy called Active Learning with

Asynchronous Model Predictions (ALAMP) or ALAMP-div. The study utilized a

ResNet-18 model as “FT” and an SVM classifier.

[DW09] utilizes TF-IDF for feature extraction on spam message (spam e-mails).

They tested different machine learning models and query strategies (Random-,

Uncertainty- and Cluster Sampling (K-Medoids)).

More authors use clustering, but not typically in the context of active learning or

URL data. In for example [SR21] k-Medoids clustering plays a significant role.

There, the k-medoids algorithms Alternate, Partition Around Medoids (PAM), and

Clustering Large Applications (CLARA) are utilized. PAM is the most commonly

utilized method, which has led to the development of similar methods like Faster-

PAM or FastPAM1. Because of the bad performance of PAM on large datasets,

CLARA is implemented and utilized. All of the previously described methods are

tested in various settings.

Expected Model Output Changes is another active learning strategy, that measures

the expected change of model outputs and is created by the authors of [FRD14].

It’s a pool-based query strategy, that can be used on classification or regression

tasks. The EMOC technique was tested on image data utilizing Gaussian process

regression models, as reported in the research paper.

There are various query strategies used in related work. Simple methods (like Un-

certainty Sampling) are commonly used in the context of malicious URL detection,

while more complex or self-implemented methods and clustering are often utilized

for other tasks, such as image classification.

14

1.4 Overview

Incremental active learning and lifelong learning are techniques that extend active

learning. Both are further explained and tested in [BBK+22]. The study demon-

strates that these techniques can be used to enhance the performance of an initial

model through a lifelong learning cycle. This cycle involves active learning, where

instances are queried, followed by annotation, and lastly, incremental learning to

improve the model. [KRFD16] discuss a similar lifelong learning cycle for visual

recognition with image or video data.

There are many studies focused on detecting malicious URLs with the involved

steps of data preprocessing, feature extraction, model training, and active learning.

Some of them actually do not explain steps like data preprocessing and feature

extraction. Additionally, active learning is often only utilized with simple query

strategies, such as random or uncertainty sampling. Advanced methods are rarely

taught and are mostly used for other tasks, such as image classification. Clustering,

which can be used to filter the initial training data, is usually not applied to this

task. Furthermore, incremental active- and lifelong learning is not widely used and

even less in the context of malicious URL detection.

1.4 Overview

In this section, we will provide a brief overview of the thesis by listing upcoming

chapters and explaining the information that can be found in each chapter.

The first chapter is called the Background (chapter 2), and it introduces the terms

and techniques that will be used in the later chapters. The next chapter is the

Methodology (chapter 3), which is divided into two parts. In the first part, we

will explain the thesis’s pipeline and the corresponding research questions. In the

second part, we will describe the implementation of the ideas. The following chapter

will show the experiments, along with some dataset descriptions and settings. The

experiments will be further explained and the relevant results will be displayed.

Finally, the last two chapters will provide the thesis’s conclusion and some further

work.

15

Chapter 2

Background

The background provides an explanation of terms that may not be familiar to all

readers and are used in later chapters.

2.1 Uniform Resource Locators

“Uniform Resource Locators (URLs) are a standardized format for describing the

location and access method of resources via the internet” [AVW20]

Figure 2.1: Uniform Resource Locator Structure [AVW20]

[AVW20] presents some information about URLs. URLs are an essential part of nav-

igating the web and sharing online resources. They are made up of various compo-

nents, as shown in Figure 2.1. The picture also demonstrates that different combina-

tions of the components can lead to the same page. The <user>:<password> and

<port> components are not commonly used in the user-facing. That means if you

are only using and not working with URLs, you don’t see them usually. The <host>

itself can be split into three components, <subdomain>.<domain>.<top level

domain>. They are separated by dots.

17

Chapter 2 Background

For example, in the URL www.bbc.com shown in the picture, the top-level do-

main is com, the domain is bbc, and the subdomain is www. Another example is

facebook.mobile.com; when the browser tries to visit this URL, the server asso-

ciated with com is contacted to do a lookup for mobile. Then the same is done

for mobile to lookup for facebook. So URLs are always read from back to front.

[AVW20]

2.2 URL Attack Techniques

Cyberattack Techniques refer to the various methods used by hackers or attackers

to gain unauthorized access to user’s data or -systems or to cause damage to them.

These attacks are typically carried out using malicious URLs, and can take the form

of Defacement, Malware, Phishing, and Spam attacks. These cyberattacks only

work because an unaware user clicks on URLs of malicious websites. Below, the

attacks named by [AAA+22] are explained further.

2.2.1 Defacement URL Attacks

When the user is redirected to a malicious website, the site’s visual appearance or

content is altered without their knowledge or consent (same Website, but one or

multiple visual parts are changed). This involves taking down the original website

and modifying it, without requiring any authorization. This is also known as website

penetration. [AAA+22]

“For example, changing the company logo or name, or inserting totally

extraneous text, is normally considered a serious defacement, while the

normal upgrade of Web site content and of the graphical evolution of

the interface, as well as the changing advertising banners, should not

generate continuous alarms.” [BCCR19]

18

2.2 URL Attack Techniques

2.2.2 Malware URL Attacks

In this attack, users are directed to websites that install malware on the user’s

device. This malware is usually used for file corruption, keystroke logging, and

identity theft. Such a method is named Drive-by download, where the user

unintentionally downloads malware by visiting a malicious website, even if only for

a brief moment. [AAA+22]

2.2.3 Phishing URL Attacks

Figure 2.2: Phishing Attack [MBA+21]

Phishing is a type of attack that aims to steal valuable information, e.g. by tricking

users into clicking on a link that takes them to a fake website. One way is email-

to-email (Hackers send mail asking for personal data). Others are email-to-website

(Hacker sends a mail with phishing URL inside), website-to-website (User clicks

on phishing URL on a website or online advert), and browser-to-website (Use of

incorrectly spelled URL that leads to phishing website). [AVW20, MBA+21]

URL manipulation is a method used by cybercriminals to deceive users into visiting

a malicious website instead of the intended one. For instance, a user may want to

log in to their bank account by clicking on a link, like https://bankofthewest.

foobar.com, but the URL they click on is not the correct one. Instead of leading

them to their bank’s website (Original page: https://bankofthewest.com), the

link takes them to a fake website that looks like the bank’s login page. The user

may then enter their login credentials on this fake page, which the cybercriminals

19

https://bankofthewest.foobar.com
https://bankofthewest.foobar.com
https://bankofthewest.com

Chapter 2 Background

can use to steal their sensitive information. This type of attack can also infect the

user’s computer with malware. [AVW20]

2.2.4 Spam URL Attacks

Spammers use a technique called “cloaking” to create web pages that deceive the

browser engine into thinking that the website is harmless. They do this by illegally

boosting the website’s search ranking. The higher a website is in the search ranking,

the higher it is listed if a user searches for a related topic. The objective is to attract

more users, who may then click on the corresponding URL. Alternatively, spammers

may send spam emails that contain spam URLs. [AAA+22]

2.3 Malicious URL Detection

Malicious URL Detection is a crucial process in cybersecurity. It involves examining

website links to determine whether they are malicious or not. This is done to

prevent web users from visiting harmful websites. Different systems have varying

functionalities and detect malicious URLs at different points in the network. [Cha13,

SLH17]

Figure 2.3: IDS and IPS in network security, reworked from [Cha13]

20

2.3 Malicious URL Detection

There are two systems that can be used for this process, Intrusion Prevention

Systems (IPS) and Intrusion Detection Systems (IDS) (as shown in Fig-

ure 2.3).

IPS are like a firewall. They directly sit between two networks and control the traffic

going through them. The only difference is that firewalls deny access for requests

that do not match the safety definitions, and IPS only accepts requests that do not

seem malicious to the system. [Cha13]

IDS are installed software or physical appliances that monitor network traffic to

detect unwanted malicious traffic. IDS tools can also store the detected events in a

log file for later review. [Cha13]

The difference between IPS and IDS is illustrated in Figure 2.3. IDS only detects

the problem and requires further assistance from a human or another system to

interpret the results and take action. On the other hand, IPS goes a step further by

detecting the problem and rectifying it if necessary. [Cha13]

IDS are the more fitting technique for the thesis. With the development of various

approaches over time, URL attacks can be detected. Additional systems are used to

review the data, and decisions are made based on that information, either granting

or denying access. Down below are popular approaches listed from the past to today.

[SLH17]

2.3.1 Blacklisting and Heuristic/Rule-based Approach

Blacklisting is a common and classical technique that consists of a list of URLs

that are well-known for being malicious. Whenever a user visits a new URL, the

list is checked to see if the URL is present in it. If the URL is found, it is classified

as malicious, otherwise it is marked as benign. However, the challenge with this

approach is that new malicious URLs are created every day, and if they are not

present on the list, they cannot be detected. This means that new threats may

go undetected or it may require a significant effort to update the list frequently.

[SLH17]

The Heuristic/Rule-based approach is basically an extension of the blacklist

method. Attacks that appear more than once are identified and get signatures.

21

Chapter 2 Background

Intrusion detection systems are then used to scan the website for these signatures.

These threats can also be detected in new URLs. This approach is also named

“blacklist of signatures” because the signatures are added as rules to a list, which is

then used as a blacklist. The used methods are only functional for a limited num-

ber of common threats, so not for all types of attacks. Additionally, obfuscation

techniques can be used to bypass the systems check. Another problem is that if the

website isn’t launching the attack directly after visiting, a detection system can’t

detect the attack or not immediately. [SLH17]

2.3.2 Machine Learning Approaches

The analysis of URL information involves a process called Feature Extraction,

which is important for associating each URL with certain features. This process

is important not only for malicious URLs but also for benign ones. Enhancing

the features that reflect a URL makes it easier to distinguish between benign and

malicious URLs. Machine learning algorithms are used for the detection. Firstly,

features are extracted, and then a suitable model is trained using this data. The

model can then be employed to label new URLs with different labels/classes, such

as benign or malicious (More different labels/classes are possible). [SLH17, RVK21,

RPA22]

For feature extraction, there are different approaches that use either fixed features of

URLs, like Classical Feature Extraction or Natural Language Processing (NLP)

methods that extract the features in a more complex way, like by Vectorization

or by Transformer. In terms of machine learning, the success of the algorithm

depends on how well it fits the data used. [SLH17, RVK21, RPA22]

The feature extraction is an essential part of the thesis and is further explained in

the next sections.

22

2.4 Classical Feature Extraction

2.4 Classical Feature Extraction

2.4.1 URL Feature Categories

The most common ones are the Lexical Features. These features are directly

extracted from the URL string and include aspects such as the length of the URL,

certain parts of the URL, and the count of specific characters (., /, @, ...). [RPA22]

Host or Web Server based Features are another type of feature that can provide

information about a website’s location, identity, management style, and properties

of the host. These features include the IP address, domain registration, and location.

[RPA22]

Page based Features are extracted from the page contents (Issue: malicious web-

site need to be accessed for that). Like HTML features, JavaScript features or Visual

similarity features. [RPA22]

The last are Popularity Features, which are obtained from third party servers,

like page rank, link popularity score or social reputation features. These features

are e.g. Public share count on Facebook and Twitter or Google page rank. [RPA22]

The last two types are less commonly used.

2.4.2 Extraction Technique

URL Feature Extraction is a more simple technique. Here, specific features from

the previously named categories are selected. The selected features are extracted

for every URL and then used in machine learning to label them accordingly.

2.5 Natural Language Feature Extraction

2.5.1 Natural Language Processing (NLP)

NLP is a computerized method used for analyzing text. The goal is to process text to

“human-like language”, which is also referred to as Natural Language Understanding

23

Chapter 2 Background

(NLU). Human-like language means allowing the computer to understand the text

in the same way as a human can. So, the true goal is for an NLP system to be

a true NLU. For that, it needs to paraphrase an input text, then translate it into

another language, answer questions about the content of the text, and in the end,

draw interferences from it. However, drawing inferences is still a task that NLP

needs to improve upon to achieve true NLU. [Lid01]

In the thesis, URLs instead of text are analyzed and processed. The following

techniques demonstrate how features are extracted out of URLs using NLP.

2.5.2 Word Vectorization / Word Embedding

The terms Word Vectorization and Word Embedding are equally used. [BAK+19]

The vectorization is a text processing technique working with NLP. Various methods

such as TF-IDF, Count or Hashing Vectorization are employed to convert URLs into

feature vectors, which are lists of numerical values. For that, the processed data must

be split into trainings-data and remaining-data. The vectorizer is then fitted on the

trainings-data and the whole dataset can be converted to vectors. [LBK21]

For that, the input text or URLs are converted into numerical values and saved

in the feature vectors. These numerical values should represent the most impor-

tant information of the input. Machine learning models can now easily analyze or

understand the given input. [SGP+23]

TF-IDF Vectorization

“TF-IDF stands for “term frequency-inverse document frequency”, which

means the weight allocated to each token not only depends on its frequency

in a document but also how persistent that term is in the entire corpora”

[VV19].

24

2.5 Natural Language Feature Extraction

TFIDF(t, d,D) = TF(t, d) · IDF(t,D) (2.1)

t: Term/Word

d: Document (consists of multiple terms)

D: Collection of documents

This method basically calculates the term frequency TF(t, d) and inverse document

frequency IDF(t,D) (see Equation 2.1). The term frequency is the count of one

term/word in one document, and inverse document frequency is the count of docu-

ments in which one term appears. [Gau20, VV19]

Count Vectorization

Count-Vectorization is the most straightforward vectorization, it counts the number

of times a token shows up in a document and uses this value as its weight [VV19].

2.5.3 Transformer

Transformer, also named transformer-based pretrained language models (T-PTLM).

Big existing ones are GPT-1, BERT, XLNet, RoBERTa, ELECTRA, T5, ALBERT,

BART and PEGASUS. Such models are useful because they can learn universal

language representations from a large volume of data. [KRS21]

Deep learning models such as Convolutional Neural Networks (CNNs) and Recur-

rent Neural Networks (RNNs) encounter difficulties in learning word representations

with locality bias and modeling long-term contexts. Transformers do not face this

problem as they rely on self-attention, which assigns weights to words, allowing

the model to determine the significance of each word. Self-attention is more par-

allelized than RNNs, and the transformer can easily model long-term contexts as

every token attends to all the tokens on the input sequence. Transformers also use

a large amount of encoder and decoder layers, enabling them to learn complex lan-

guage information. This can also lead to an expensive and time-consuming process.

[KRS21]

25

Chapter 2 Background

Transformers are machine learning models trained on a large amount of data in self-

supervised learning. This method enables the model to learn the language it has

been trained on. The more data is used and the bigger the model size, the better

the performance of the transformer model. These models can be trained on general

data or specific data that is used for the experiments. [KRS21]

Transformers can be utilized for both feature extraction and classification. These

two processes require different types of models. For the classification, a matrix

of numbers is usually needed. For that, the input text needs to be mapped to

a sequence of dense, low-dimensional vectors commonly named embeddings. Sub-

word and character embeddings are commonly used instead of word embeddings

as they have a smaller vocabulary size. Tokenizers are often used to create the

sub-word vocabulary. [KRS21]

In the case of the thesis, the transformers are only needed for the feature extraction.

That’s the reason, why further explanation for the classification use is not needed.

Bidirectional Encoder Representations from Transformers (BERT)

BERT interprets textual material bidirectionally and collects contextual informa-

tion.

There are two steps in the process of the BERT tokenizer: Canonicalization and

Tokenization. In the first one, numerical punctuation marks, and special charac-

ters are ignored, and upper-case letters are converted to lowercase. In the tokeniza-

tion (uses a glossary of 30,522 words), the input is segregated into a certain format

of a list of tokens as in the glossary. WordPiece tokenization is used to handle terms

that are not present in the glossary. It splits the word text into subwords or root

words by removing prefixes and suffixes. Example: “looking” is represented as “look

+ ##ing”. [SMSX19]

The BERT model converts the tokenized URL from the BERT tokenizer into BERT

embeddings, which reflect the contextual knowledge of each token in the URL se-

quence. The embeddings capture the contextual links between words and subwords

by encoding the semantic and syntactic information of the tokens. In general, the

embeddings help models to understand the meaning and context of the URLs. [JA23]

26

2.6 Evaluation

2.6 Evaluation

2.6.1 Dataset Splitting

To ensure reliable and accurate machine learning model training, it is crucial to

split a dataset into independent sets before using it for testing or training. It is

important that no set contains any data from another set. Otherwise, the model

already knows data from the test set, and the test data no longer provides a reliable

measure of generality. [Lon21]

Only a training- and test-set is needed for general model training. A Split of 80:20

or 70:30 for training- and test-data are usual (means 80% to 20%). The training-

set is used to train the model, and the test-set is utilized to calculate the model’s

accuracy. [Lon21]

An effective way to split a dataset, especially in active learning, is by dividing it into

three sets: initial, test, and unlabeled training set. You can split it in a ratio of like

80:10:10 or 10:80:10. The initial training set is used for the initial model training,

the test set is used to calculate accuracy, and the unlabeled training set is used for

active learning, which is further explained in section 2.7.

2.6.2 Cross-Validation

Cross-validation (CV) is a data resampling method and is used to utilize the

collected data better, reduce overfitting, and generalize the model predictions.

[Ber19, NCB23]

k-fold Cross-Validation

The whole dataset is partitioned into k parts (all equal size). Every partition is

called a fold. One fold is used as a test-set, and k-1 folds as train-sets. To use every

fold as a test-set, the process is done k times. The average overall k performance

measurement is the cross-validated performance. The standard-deviation can also

be calculated and shows the variation of the k result values. [Ber19]

27

Chapter 2 Background

Leave-one-out cross-validation

Please keep in mind that this process involves using only one sample data as a

test-set and n-1 samples for train-set, which is a more specialized version of k-fold

cross-validation. Like in k-fold cross-validation the process is repeated n times, so

the computational costs are very high, so it shouldn’t be used with large datasets.

[Ber19]

It’s worth noting that cross-validation is a process in machine learning used to

validate the data used, such as after preprocessing and feature selection, as well

as in model hyperparameter tuning, such as finding the optimal number of nearest

neighbors in the k-nearest-neighbor classifier.[Ber19, Lon21]

It is not recommended to use Cross-Validation in the later stages of the process

because it becomes difficult to select a single model from multiple created models.

Selecting the model with the highest accuracy leads to another problem, as the test-

set used for evaluation may be too small and easy to predict, which can result in

high accuracy. To overcome this issue, it is suggested to use a different test-set with

more data or keeping some data aside before performing Cross-Validation. [Lon21]

2.7 Active Learning

Figure 2.4: Active Learning Cycle [Set09]

Active learning is a process that is applied if there is a big pool of unlabeled data

and a machine learning model that is already trained on comparable data. These

28

2.7 Active Learning

techniques should find the most relevant or uncertain samples for the model to

annotate. The benefit is that only a small part of the unlabeled pool needs to be

annotated. Furthermore, the model can be improved with the found samples. The

more the model improves, the better the algorithm for that particular model or use

case. Stopping Criteria are used to determine when an active learning cycle should

stop. These criteria can include a number of cycles or a maximum accuracy level.

[BBK+22, Set09]

The process of active learning involves an annotation process if the additional data is

not labeled corresponding to the labels/classes of the model. Samples are annotated,

usually by humans, when they are selected. [BBK+22, Set09]

Active learning can be used for different tasks, such as speech recognition, informa-

tion extraction, or like in the case of the task, classification and filtering. [Set09]

There are different sampling strategies and corresponding sampling methods. Two

popular strategies are Stream-based Selective Sampling and Pool-based Ac-

tive Learning. The stream-based variant selects samples from a stream of data.

Per epoch, one sample is given, and for that, it is chosen whether it should be queried

or not. The pool-based method, on the other hand, selects samples from a large

pool of instances (This strategy is shown in Figure 2.4). Pool-based sampling is also

the most used variant, with methods like Uncertainty Sampling or Query-by-

Committee. Uncertainty Sampling selects the samples that are the most uncertain

for the current model. Query-by-Committee uses multiple models to select the best

samples — those that are chosen by the most models. [Set09]

29

Chapter 2 Background

Figure 2.5: Sampling Strategies [KG20]

There are numerous strategies and methods, as shown in Figure 2.5 above. Over

time, more complex strategies have been developed to improve a model to achieve

the best possible results.

2.7.1 Uncertainty Sampling

Uncertainty Sampling is a popular and widely used active learning technique. In

this method, the most uncertain instances are queried. In the instances, the learner

is least certain how to label. The posterior probabilities are used to make final deci-

sions. This method is often quite straightforward for probabilistic learning models.

[SACAF21]

30

2.7 Active Learning

Figure 2.6: Working mechanism of the different sampling strategies used for uncer-
tainty sampling [SACAF21]

Figure 2.6 shows two instances with the possible labels. For each instance, the

probability of each label is displayed.

Least Confidence Sampling

Least Confidence Sampling chooses the instance from the unlabeled pool of samples

that has the least confidence about its most likely label. In general, the strat-

egy is working better for multiclass classification. The corresponding equation is

[SACAF21]:

LC(x) = argmaxx(1 − pθ(y | x)) (2.2)

x: Current sample

y: The most probable label

θ: The underlying model

pθ(): Posterior probability

In Figure 2.6 you can find how it works on an example.

31

Chapter 2 Background

Margin Sampling

Least Confidence does not consider the rest of the labels, which might be useful in

the selection process. Margin Sampling incorporates the posterior probability of the

second most likely label by selecting an instance having the least difference between

the top two most probable labels. The equation for that is [SACAF21]:

MS(x) = pθ(y1 | x) − pθ(y2 | x) (2.3)

x: Current sample

y1: The most probable label

y2: The second most probable label

θ: The underlying model

pθ(): Posterior probability

An example is shown in the Figure 2.6.

Entropy Sampling

Like in Margin Sampling, taking the top two most probable labels to represent

the probability distribution is not sufficient, if there is a high number of classes.

Entropy Sampling utilizes the probability distribution by calculating the entropy of

each instance. [SACAF21]

ES(x) = −
∑
y∈Y

pθ(y | x) · log2 pθ(y | x) (2.4)

x: Current sample

Y : Output class

y: The most probable label

θ: The underlying model

pθ(): Posterior probability

It is a more useful technique for probabilistic multi-class classification but works as

well as Least Confident and Margin Sampling for binary classification. [SACAF21]

32

2.7 Active Learning

2.7.2 Query-by-Committee

Multiple trained classifier C = (θ1, θ2, . . . , θn) are used. The queries are selected by

measuring the disagreement between these models. The aim is to get a more precise

search with as few labels as possible.

Vote Entropy Sampling

Vote Entropy is the generalized entropy-based uncertainty sampling, with the equa-

tion [SACAF21]:

VE(x) = argmaxx −
∑
i

V (yi)

C
· log

V (yi)

C
(2.5)

x: Current sample

yi: Vector of all possible labels

C: Committee of classifier

V (yi): Total number of votes for a label

Every model votes for a sample, the votes are then summed up for every sample,

and the entropy of every vote is calculated. The instance with the largest entropy

of its votes is selected. [SACAF21]

Consensus Entropy Sampling

In Consensus Entropy Sampling, the class/label probabilities with each model from

the committee are calculated. Then, the average is taken, which is the consensus

probability, and the samples with the largest entropy are selected for labeling. The

corresponding equation is [SACAF21]:

33

Chapter 2 Background

CE(x) =
1

C

C∑
c=1

pθ(yi) (2.6)

x: Current sample

yi: Vector of all possible labels

C: Committee of classifier

θ: The underlying/current model

pθ(): Probability with the model θ

Max Disagreement Sampling

Here, the disagreement of each model is calculated by using consensus probability.

Then, the samples with the largest disagreement are selected. In this way, the actual

disagreement is taken into account. [SACAF21]

2.7.3 Incremental Active Learning

Incremental active learning is a variant of active learning. The difference is that

the chosen samples are fitted to the model before the start of the next cycle. This

creates a feedback loop, allowing the model to be updated directly with the newly

selected data. As a result, the selection algorithm needs to adapt to determine which

samples should be selected next for further improvement. Over time, the probability

of selecting samples that don’t lead to improvement can be reduced. [BBK+22]

2.7.4 Lifelong Learning

Lifelong learning extends incremental active learning further. Every epoch, mod-

els are typically built entirely from scratch and trained using the train-set and

freshly queried samples. With this technique, the already trained model is only

learned/fitted with the new queried samples. This process is more efficient since

less data is required to fit each epoch, and the model can be maintained. The

accuracy results are consistent with the results of incremental active learning.

[BBK+22, KRFD16]

34

2.8 Clustering

2.8 Clustering

Clustering is an unsupervised machine learning algorithm. It deals with the data

structure partition in an unknown area, which means the technique identifies similar

groups of data in a large dataset. These groups are then named clusters. [XT15]

There is no perfect definition, but some rules are important:

1. “Instances in the same cluster, must be similar as much as possible” [XT15]

2. “Samples in different cluster, must be different as much as possible” [XT15]

3. “Measurement for similarity and dissimilarity must be clear and have practical

meaning” [XT15]

The process can also be divided into general steps:

1. “Extract and select the most representative features from the original data set”

[XT15]

2. “Design the clustering algorithm according to the characteristics of the prob-

lem”[XT15]

3. “Evaluate the clustering result and judge the validity of algorithm”[XT15]

4. “Give some practical explanation for the clustering result”[XT15]

2.8.1 K-Medoids Clustering

This technique is similar to k-means clustering, which involves dividing a dataset

into k clusters. Initially, k samples are randomly selected as initial medoids, where

each medoid represents a cluster. A Medoid is the sample with the lowest distance

to all other instances in the cluster. For the distance calculation, different measures

can be used, but typically, Euclidean distance is used. All other instances are then

assigned to the clusters that they best fit in, meaning they are assigned to the cluster

with the lowest distance to its medoid. [Bha14, PJ09]

During the process of k-medoids, each instance is examined to determine whether

it would be a better representation for a cluster than the current medoid. If that

35

Chapter 2 Background

is the case, a medoid is changed to the new one, and all instances are reallocated

to their respective clusters. This cycle is repeated until no medoid changes occur.

[Bha14, PJ09]

There are different algorithms of k-medoids, such as Alternate, Partitioning Around

Medoids (PAM), and Medoid Silhouette Clustering (MSC). [SR21, Bha14, LS22]

Partitioning Around Medoids (PAM)

Partition Around Medoids is a clustering algorithm, that is a variation of the k-

medoids algorithm. In the following, the algorithm is explained furthermore:

1. There k instances are randomly selected as medoids

2. For each pair of non-medoid instance xj and selected medoid mi, calculate the

total swapping cost S(xj,mi). If S ¡ 0, mi is replaced by xj

3. Repeat steps 2. and 3. until there is no change in medoids

Cost =
∑
xj

dist(xj,mi) (2.7)

S = Cost(new Ci) − Cost(Ci) (2.8)

Ci: A cluster that represents a feature with instances inside

xj : An instance inside the cluster Ci from the dataset

mi: The medoid of the cluster Ci

dist(): The distance function

Cost(): Calculates the sum of the distances between each instance xj

and the medoid mi

S(): Calculates the swapping costs by subtracting the costs of the

cluster Ci with xj as medoid and the costs of the cluster Ci

with mi as medoid

36

2.8 Clustering

Clustering Large Applications (CLARA)

CLARA is a clustering algorithm that applies sampling approaches to handle larger

datasets. It is more efficient compared to PAM when working with larger datasets.

The algorithm involves two main steps: Sampling and Clustering. Sampling divides

the dataset into smaller subsets. In the Clustering step, the PAM algorithm is

applied to each subset to find the optimal k medoids based on a chosen distance

function. These two steps are repeated until a set of medoids with minimal cost is

found. [Bha14, SR21]

37

Chapter 3

Methodology

In this chapter, the methodology is explained. This includes initial ideas and an

overview of the project pipeline implementation.

3.1 Ideas

We conducted research on related work and came up with ideas on how to complete

the task. The related work typically involves three to four steps: dataset preprocess-

ing, feature extraction, machine learning, and possibly active learning. All of these

steps should be included in this thesis, and we should explore testable methods from

related work that have proven helpful in producing high-accuracy results.

To preprocess the data, we need to discover methods that make the data less noisy

and have a positive impact.

For feature extraction, it is necessary to search for methods that extract the features

in different forms. It can be done through heuristic feature extraction, such as using

the length of URL parts or the count of chars, or through NLP, where Vectorization

or Transformers are often used to produce word embeddings that can be converted

to feature vectors.

In machine learning, we do not need classifiers that reach the highest accuracies. The

primary focus should be on improving the models with active learning, not initial

training. Therefore, it is advisable to test both simple models such as Random

39

Chapter 3 Methodology

Forest or SVM from related work, as well as complex models, to determine the level

of complexity that is required to avoid overfitting

We should test different techniques for active learning, primarily incremental and

lifelong learning. Therefore, we should test various query strategies.

Corresponding to the ideas, research questions were defined (they are marked with

“RQ” if used):

1. Which preprocessing steps can be added to improve the Classification of ma-

licious URLs?

2. Which feature extraction methods are most suitable for URL Labeling?

3. Is Natural Language Processing (NLP) usable for feature extraction with URL

data?

4. Which machine learning classification models are appropriate for URL Classi-

fication?

5. Which query strategies perform the best for URL Labeling?

6. How can clustering be utilized for URL Labeling?

7. Should lifelong learning be integrated into the project?

3.2 Implementation

Figure 3.1: The whole pipeline

The Figure 3.1 shows the process steps utilized in this thesis. All of them are further

explained in the following.

40

3.2 Implementation

3.2.1 Preprocess datasets

The first step in the process is to clean the datasets by removing entries that have

outstanding values such as missing values, wrong data types, NaN values, and infinite

values. These entries are not useful and cannot be used in the analysis. [GYR+21]

Next, the URLs are preprocessed by removing the substrings “http://” and

“https://” as they only identify the protocol and are not very useful in identify-

ing malicious URLs (see section 2.1). [WWXZ22]

Additionally, the query parameters, which can be noisy and without meaningful

information, are removed by eliminating the string after the first appearing ”?”.

Longer URLs do not improve learning, so every URL is truncated to 128 characters

(see section 2.1). [VBB23]

3.2.2 Feature Extraction

Figure 3.2: Feature Extraction Pipeline

Figure 3.2 depicts the feature extraction pipeline. This provides a general overview

of the process that is carried out.

For the feature extraction different techniques are tested: Select Best Feature

Extraction, Vectorizer, Transformer. Various methods are implemented with

the named techniques to transform the URLs into feature vectors. The first four

methods correspond to Select Best Feature Extraction, the next two to the

41

Chapter 3 Methodology

feature extraction by Vectorizer and the last one is a Transformer. They are

further explained in the next part.

After the feature extraction, models based on the newly acquired data are tested

with “k-fold Cross-Validation”. With the cross-validation, machine learning models

are trained, and the results can be used to validate whether the data can be further

used.

In the following the extraction methods are explained more. Every method gets the

name feature ex + the method number, like feature ex1.

Select Best Feature Extraction

First, lexical features and host features corresponding to the URLs are calculated.

For other features, ratios and rates between the features are also computed. Every

method selects specific features that build up the feature vectors. The following

table lists, which features are used by which method:

Method Features

feature ex1 URL Length | Hostname Length | Count Digits | Count
Letters | Use of IP | Short URL

feature ex2 Entropy Domain | Arg Path Ratio | Arg URL Ratio | Arg
Hostname Ratio | Path URL Ratio | Char Cont Rate | Num-
ber Rate Filename | Hostname URL Ratio | Number Rate
URL | Path Hostname Ratio | Number Rate Afterpath |
Avg Path Token Length

feature ex3 feature ex1 ∪ feature ex2

feature ex4 Best k features from feature ex3

Table 3.1: Select best feature methods

The chosen lexical and host features of feature ex1 are selected because this com-

bination would give the best prediction. Further details are available in [CYRR21].

The lexical features of feature ex2 are identical to the ones used in [MRL+16a].

Different algorithms were used to find best features for every possible label. Here

the overall best features (not specific to one label) were used.

In the third feature extraction method (feature ex3), both papers’ common fea-

tures were used since the two papers did not share any features.

42

3.2 Implementation

For feature ex4 the best features of a list of different features are chosen.

Feature selection algorithms are used to select the most relevant features for clas-

sification tasks. There are three possible algorithms, that can be utilized for this

purpose. One algorithm utilizes the ANOVA F-Value or F-Test [SW+89]. Another

estimates the mutual information for a discrete target variable [PLD03]. The last al-

gorithm calculates the chi-squared statistics between each non-negative feature and

class [LS95]. It is possible to achieve high results with all three algorithms, depend-

ing on the machine learning algorithm, the selection of features, and the number of

chosen features. Therefore, there is no best algorithm. [ASBAK+23]

We use the algorithm working with mutual information. It calculates the relevance of

every feature to a target variable [DGG23]. In this case, the relevance to the labels

is calculated, and the 10 best features are selected (There is no best number of

features; the number depends on the model and the possible features [ASBAK+23]).

Feature description for feature ex1 [CYRR21]:

A short URL is a substantially shorter URL that redirects to the original longer URL.

For that, shortening services like “bit.ly” or “tinyurl.com” are usually used. An

URL, like http://www.this.is.a.long.url.com/indeed.html is converted into

http://bit.ly/dv82ka, where “dv82ka” is the key that represents the original

URL. [APK+11]

Table 3.2 provides a detailed description of the features and their corresponding

types.

Feature Description Type

URL Length Length of URL (Number of
characters)

integer value

Hostname Length Length of URL hostname component integer value

Count Digits Count of digits (0-9) integer value

Count Letters Count of symbols from the alphabet
(A-Z, a-z)

integer value

Use of IP Is IP used instead of domain name? boolean value

Short URL Is a known short URL string shown? boolean value

Table 3.2: Feature description and type for feature ex1

43

http://www.this.is.a.long.url.com/indeed.html
http://bit.ly/dv82ka

Chapter 3 Methodology

Feature description for feature ex2 [MRL+16a]:

The URL components that are mentioned in the following are further explained in

the background at section 2.1.

“Afterpath” is equivalent to the “Query-String”, because it is the component after

the “URL-Path”. That means it is the part of the URL, after the question mark.

(see section 2.1)

The character continuity rate is the longest sequence of alphabet, digits and spe-

cial symbols in the URL. The equation is: character continuity rate = (A + D +

S)/total length of URL. An example : abc567ti = (3 + 3 + 1)/9 = 0.77.

The filename component in the URL is the string that appears before the file ex-

tension of a file. In, for example, http://www.example.com/dir/file.html the

filename is “file.html”.

Table 3.3 provides a detailed description of the features and their corresponding

types.

Word Vectorization / Word Embedding

Two vectorization methods are tested. TF-IDF Vectorizer [SJ72] in feature ex5

and Count Vectorizer in feature ex6.

For TF-IDF, different parameters were used. We have not used any smoothing in the

calculation, as this allows for a more strict calculation of IDF without any additive

smoothing. We have also avoided normalization, especially since the length of the

URLs does not differ significantly. To avoid any reduction in performance, we have

capped the calculated features to 1000 features, as the number of features calculated

for every instance can increase with the size of the dataset.

Similarly, for Count-Vectorizer, certain parameters need to be set. Since the URLs

are primarily written in English, we have used a predefined set of English stop words.

To ensure memory efficiency with larger datasets, we have used 32-bit float instead

of 64-bit integer. Here as well, we have capped the features to 1000, due to the use

of large datasets.

44

http://www.example.com/dir/file.html

3.2 Implementation

Feature Description Type

Entropy Domain Calculates entropy
(Detection of lookalike
characters, e.g. CITI can be
written as CIT1)

continuous value [0-1]

Arg Path Ratio Length ratio of argument
component (Query-string) to
path component (URL-path)
−→ Division of length of
argument and path
component

continuous value [0-1]

Arg URL Ratio Length ratio of argument
component to URL string

continuous value [0-1]

Arg Hostname Ratio Length ratio of argument
component to
hostname/host component

continuous value [0-1]

Path URL Ratio Length ratio of path
component to URL string

continuous value [0-1]

Char Cont Rate Character continuity rate continuous value [0-1]

Number Rate Filename Proportion of digits in the
filename component to the
filename component length

continuous value [0-1]

Hostname URL Ratio Length ratio of hostname
component to URL string

continuous value [0-1]

Number Rate URL Proportion of digits in URL
string to length of URL
string

continuous value [0-1]

Path Hostname Ratio Length ratio of path
component to hostname
component

continuous value [0-1]

Number Rate Afterpath Proportion of digits in
afterpath to length of
afterpath

continuous value [0-1]

Avg Path Token Length Average length of tokens
(maximal sequence of
consecutive characters that
are not delimiters) in path
component

continuous value [0-1]

Table 3.3: Feature description and type for feature ex2

45

Chapter 3 Methodology

Transformer

A transformer is used in this task only for tokenization and embedding creation.

In the feature ex7 method, we are testing Bidirectional Encoder Represen-

tations from Transformers (BERT) [DCLT18b]. We will be using bert-base-

uncased from Hugging Face [DCLT18a] for the required tasks. [JA23]

Dataset Splitting

The used datasets should be split in this task, as explained in subsection 2.6.1 into

an initial training-set, test-set and unlabeled training-set. It is important to test

whether a split of, for example, 80:10:10 or 10:80:10 is more useful. The ratio of the

individual sets can be adjusted as needed. With less training-data, a model can be

trained faster. The model is typically worse (produces low accuracy) but has more

potential for improving with active learning. This strategy ensures that the initial

trainings-data does not contain data irrelevant to the model. [Lon21]

In the Experimental Results chapter 4, we explain how the datasets are used. Fur-

ther information about the actual splitting of the datasets is provided in the de-

scription of the individual experiments.

3.2.3 Machine Learning

We utilized two well-established algorithms, which have been shown to yield high

accuracy results for machine learning problems: Random Forest (RF) [Ho95] and

Stochastic Gradient Descent (SGD) [ZWSL10]. Both options are well-established

in the literature and have been proven to produce high results on similar problems.

The algorithms performed well and produced excellent results in testing on the used

datasets. (reference for RF: [LBK21, ASBAK+23, MRL+16a]) (reference for SGD:

[HY23, AAAS22])

Random Forest (RF) is a tree-based classifier and Stochastic Gradient Descent

(SGD) can be used for various tasks depending on the type of loss function used.

For the thesis, we utilize SGD with the “hinge” function, which allows us to use a

linear SVM.

46

3.2 Implementation

Additionally, both classifiers support incremental learning, which is essential for

lifelong learning.

While it is possible to fine-tune the parameters of the machine learning classifier, our

thesis’s primary goal was to optimize the model through active learning rather than

by adjusting the model parameters. This is something we plan to explore further in

future work.

k-fold Cross-Validation:

After feature extraction, the k-fold Cross-Validation with k = 5 is applied. This is

a common method in machine learning to verify a model using the training- and

test-data. The created models can also be used for machine learning, but here, they

are only used for validation. [BPM04], [NCB23]

3.2.4 Incremental Active Learning

Figure 3.3: Incremental Active Learning Pipeline

The incremental active learning pipeline is shown in the Figure 3.3. The pipeline con-

sists of a cycle, also known as an “Epoch”, where data is selected using a query strat-

egy, annotated, and used to improve the model. The active learning pipeline process

is typically repeated over multiple epochs, until a stopping criterion is reached. In

this case, the stopping criterion is the “Number of Epochs”, which means a fixed

number of epochs is performed. Once this fixed number of epochs is completed, the

active learning process ends. [Set09]

Multiple query strategies are tested for the data selection on already trained models:

• Random-Sampling (Pool-based and Stream-based) [APH22, DW09]

47

Chapter 3 Methodology

• Uncertainty- (Least Confident), Margin- and Entropy-Sampling (Pool-based

and Stream-based) [Set09, SACAF21]

• Query-by-Committee (QBC) → Max Disagreement-, Consensus Entropy- and

Vote Entropy-Sampling [Set09, SACAF21]

• Clustering (Partitioning Around Medoids, Clustering Large Applications)

[DW09, SR21]

• More strategies like Expected Model Output Change (EMOC) [FRD14]

EMOC was not further tested, because it is an unsuitable model for tasks with large

datasets. It is built on Gaussian process models, and these have a time complexity

of O(n3) and require O(n2) storage, where n represents the number of training

examples. The primary issue with this model is the required memory. In active

learning, the number of training examples and memory usage increases with every

epoch. Although sub-sampling the data can be a potential solution, it remains a

task for future work. [FRD14, Tit09]

This section does not include specific parameters for the query strategies and the

active learning. They are specific to the experimental runs in the next section

(chapter 4).

3.2.5 Lifelong Learning

To integrate the Lifelong learning technique into the thesis, a classifier needs to be

capable of fitting new samples into a pre-trained model. In order to determine if this

technique works, the Random Forest (RF) and Stochastic Gradient Descent (SGD)

algorithms were utilized for testing.

RF has no particular function to do incremental learning, but with some parameter

adjustments, new query samples can be fitted onto an existing model. On the other

hand, SGD uses partial fitting, where the model learns new samples directly, as

targeted by the Lifelong learning technique.

RF is a tree-based classifier. Therefore, it is important to test different models to

compare various model types. Many classifiers from the literature are tree-based,

which limits the variety of usable models. Some classifiers, like Logistic Regression

48

3.2 Implementation

(LR) and Support Vector Machine (SVM), do not support incremental learning.

Meanwhile, other classifiers can use partial fitting, but they cannot be used for

probabilistic tasks (e.g., Model Perceptron, MultinominalNB). Therefore, the next

part focuses only on RF and SGD.

49

Chapter 4

Experimental Results and Evaluation

In this chapter, we will provide an overview of the experimental settings and the

datasets used in the thesis. Next, we will introduce two distinct approaches, along

with their corresponding methods, parameters, and results. Finally, we will analyze

the results in detail.

4.1 Settings

The experiments are performed in Python 3.9. The code is public available under

[MM24]. The repository includes instructions on how to reproduce the experimental

results using the code. Additionally, a requirements.txt file has been included,

which lists all the packages and their versions necessary to run the code. It’s impor-

tant to note that some packages only work with specific versions of others, so using

different versions or updating them can lead to errors.

The packages: Scikit-Learn provides the classifier, the methods for clustering, and

some supporting functions. modAL provides functions for the remaining query

strategies. Matplotlib is used for generating the plots, and some other packages

provided offer additional supporting functions to aid in conducting the experiments.

For the machine learning and active learning tasks, a high-performance and high-

memory cluster is used. The name of the cluster is “Kratos” and is a High-

Performance Data Analysis Cluster (HDPA). The cluster is the main working tool

used by the DLR in Jena. The main parts of the cluster are the 32 NVIDIA graphic

processing units and up to 1.5 terabytes of RAM. [DLR20]

51

Chapter 4 Experimental Results and Evaluation

4.2 Datasets

Four URL datasets are utilized for the experiments, shown in the following table:

Dataset name Class/Label Count Source Reference

Urldata All 450,176 [Kum19] [RAA+22]

Benign 345,738

Malicious 104,438

Malicious Phish All 651,191 [Sid21] [WWXZ22]

Benign 428,103

Defacement 96,457

Malware 94,111

Phishing 32,520

Phishing All 549,346 [Tiw20] [ZKV22]

Benign 392,924

Malicious 156,422

ISCX 2016 All 165,366 [MRL+16b] [RSÁGVV23,
MRL+16a]Benign 35,378

Defacement 96,457

Malware 11,566

Phishing 9,965

Spam 12,000

Table 4.1: Initial datasets

4.3 Dataset Preprocessing

The datasets have been preprocessed to include only the URLs, labels (in string

format), and results (as integer labels). This way, the experiment uses the com-

plete URLs without relying on pre-calculated features or any other additional data.

Additionally, all URLs are already labeled.

Before proceeding further, we need to refine the dataset as there is still an issue

that needs to be addressed. When we tested the approach with single datasets,

52

4.3 Dataset Preprocessing

the accuracy results of the pre-trained models were already very high, ranging from

90%, up to almost 100%. That’s great for the machine learning models because they

performed their job well. Testing on unknown URLs that had similar features and

structure as the initial training data produced excellent results. However, the issue

arose when we tested the models on novel datasets (datasets that were not involved

in the initial training). Here, the achieved accuracies were lower than 50%. This

problem called “Domain Shift” arises when the data structure of a domain changes,

and the machine learning model may not be well-suited to handle it.

During the experiment, it was observed that training the model initially with more

URLs resulted in reduced accuracy performance. However, this issue is not being

further investigated at the moment. To prevent this problem, the training and

testing process now involves the use of multiple datasets instead of just one.

The data splitting process is implemented as explained in subsection 2.6.1. One

dataset is used for the initial model training; the remaining datasets are combined

and used for the unlabeled training set (or unlabeled pool) and test set. This

approach allows for a more realistic scenario to be set up: the model is trained on

the initial training set, which means it is trained on the features and structure of the

corresponding URLs. As new malicious URLs appear, their features and structure

change. The remaining set mimics these new URLs, as they most likely have a

different structure than the initial training set. As a result, the actual model is not

well-fitted to the test set, which leads to low accuracy. The unlabeled pool can be

used for active learning to identify the most uncertain URLs and refine the model

to increase the accuracy of the test set.

The dataset refinement is shown in Table 4.2 and described in detail below:

In the following is spoken about two-class, four-class and five-class datasets. These

classes relate to the labels that can be assigned to URLs in URL detection. You

can see all possible classes in Table 4.1. A two-class dataset typically has the classes

“Benign” and “Malicious”. A four-class dataset includes “Benign”, “Defacement”,

“Malware” and “Phishing” classes. The five-class dataset extends the four-class

dataset by adding the “Spam” class.

We have decided to work with three datasets: a two-class, a four-class, and a five-

class dataset. This will enable us to test if a higher class count makes it more chal-

lenging for a model to label URLs correctly. To create these datasets, we will need

53

Chapter 4 Experimental Results and Evaluation

to reduce the “Malicious Phish” dataset to a two-class dataset and the “ISCX 2016”

dataset to a four-class dataset.

As mentioned earlier, every named dataset will have its corresponding training set

(i.e., a two-class training set, a four-class training set, or a five-class training set).

Later, the remaining sets will be divided into an unlabeled pool and a test set.

Dataset Data

two class training Urldata

two class remaining Malicious Phish (reduced), Phishing, ISCX 2016 (reduced)

four class training Malicious Phish

four class remaining ISCX 2016 (reduced)

five class training ISCX 2016 (30%)

five class remaining ISCX 2016 (70%)

Table 4.2: Refined datasets

Due to the limited amount of data available of five-class datasets, only one dataset

has been split into a training set and a remaining set. This decision was made

after the initial dataset selection. The four selected datasets should be used for the

experiments, and no additional data should be used.

After refining the datasets listed above, all of them need to be preprocessed as

explained in subsection 3.2.1. During the experiment, the datasets are tested un-

processed and preprocessed. This means that every training set and remaining set

will be preprocessed. The reason for this is to compare the results and see if pre-

processing improves model training or active learning.

4.4 First Active Learning Experiment

We have decided to use the three refined datasets described in section 4.3 for this

experiment. The datasets are preprocessed to obtain the original and preprocessed

versions of the two-class, four-class, and five-class datasets. So, in total, 6 datasets

are tested.

54

4.4 First Active Learning Experiment

To enable machine learning, it is necessary to split the datasets, as explained in

Table 3.2.2. A split of 80:10:10 is not possible with the refined datasets, but the

distribution can be kept similar. The training set and unlabeled pool should be

larger than the test set. While the training sets are already available through dataset

refinement, the remaining sets need to be split into unlabeled pools and test sets.

A test size of 30% is used, which means 70% of the remaining set is the unlabeled

pool and 30% the test set. The URLs are randomly distributed into different sets.

In the next step, the seven feature extraction methods (subsection 3.2.2) are ap-

plied to the split datasets. The two selected classifiers, Random Forest (RF) and

Stochastic Gradient Decent (SGD) are trained and evaluated (subsection 3.2.3).

The accuracy results of the pre-trained models are shown in the following tables:

RF in Table 4.3 and SGD in Table 4.4. The best results per dataset are marked

in green. Additionally, the feature extraction methods are abbreviated (e. g. fea-

ture ex1 = fe1).

Dataset fe1 fe2 fe3 fe4 fe5 fe6 fe7

two class dataset 0.255 0.419 0.275 0.371 0.701 0.715 0.590

two class dataset (prepr.) 0.607 0.627 0.615 0.269 0.337 0.350 0.611

four class dataset 0.307 0.249 0.289 0.276 0.300 0.269 0.294

four class dataset (prepr.) 0.326 0.366 0.349 0.416 0.364 0.363 0.234

five class dataset 0.900 0.944 0.951 0.966 0.972 0.969 0.479

five class dataset (prepr.) 0.834 0.918 0.931 0.958 0.966 0.969 0.509

Table 4.3: Accuracy results of pre-trained RF model after feature extraction

55

Chapter 4 Experimental Results and Evaluation

Dataset fe1 fe2 fe3 fe4 fe5 fe6 fe7

two class dataset 0.618 0.641 0.539 0.367 0.407 0.372 0.627

two class dataset (prepr.) 0.637 0.628 0.624 0.258 0.421 0.295 0.627

four class dataset 0.787 0.204 0.206 0.222 0.309 0.309 0.147

four class dataset (prepr.) 0.282 0.237 0.308 0.395 0.357 0.351 0.147

five class dataset 0.626 0.747 0.746 0.747 0.959 0.956 0.581

five class dataset (prepr.) 0.645 0.637 0.701 0.777 0.951 0.950 0.581

Table 4.4: Accuracy results of pre-trained SGD model after feature extraction

To determine which feature extraction method is the best, two measurements are

taken into account. The first measurement is the average of a method over six

datasets. For example, the feature ex1 method has an average accuracy value of

(0.255 + 0.607 + 0.307 + 0.326 + 0.900 + 0.834) / 6 = 0.538 for the Random Forest

algorithm. The second measurement is to determine how often an extraction method

produces the highest result for a dataset (indicated by green text).

feature ex5 got the highest average for RF, and feature ex1 the highest for SGD.

Each method also got the highest results for a dataset on three different datasets.

When the average result values are summed up and averaged, feature ex5 has an

average value of 0.586, and feature ex1 has an average value of 0.568. Therefore, it

can be concluded that the TF-IDF Vectorization, which is feature ex5, has the best

overall results. This method will be used in the further process of feature extraction

for model training and active learning.

4.4.1 Additional Information

As described in subsection 3.2.4, incremental active learning is tested with four

sampling approaches. The first two are pool- and stream-based sampling with the

strategies: Random-, Uncertainty-, Margin- and Entropy sampling. The next tech-

nique is Query by Committee (QBC) with the strategies: Max Disagreement-, Con-

sensus Entropy- and Vote Entropy-Sampling. The last one is Clustering, where the

CLARA algorithm is used. QBC and Clustering are also pool-based strategies, but

for the experiments, they are divided into different approaches.

56

4.4 First Active Learning Experiment

If random sampling is used, it is utilized as “baseline” in comparison to the other

strategies. How QBC and Clustering are utilized, is further explained in the exper-

iments itself.

Lifelong learning is used, as described in subsection 3.2.5, to further improve the pre-

trained models and, at the same time, maintain a high level of efficiency through the

active learning process. It is important to mention that the used RF algorithm is not

optimally implemented for lifelong learning. Random Forest is a tree-based model

that consists of a number of trees containing nodes that are connected with each

other. To fit new samples in every active learning epoch, the already created trees of

the model should be extended. That implies the number of branches at the nodes or

the level of the trees should be increased. With more branches, the trees get wider,

and with more levels, the trees get deeper. In both ways, more complexity is added.

The currently used algorithm fits the new data only on new trees. That indicates

the number of trees or estimators needs to be increased per epoch. This way, some

risks can appear, like higher computational cost or overfitting. The algorithm is

still being used, because lifelong learning can be fulfilled nevertheless, to observe

the quality of the results. After conducting tests, we observed that reducing the

number of initial trees from 100 to 10 resulted in better performance improvements

for the model. As a result, the initial tree size was adjusted accordingly.

Pool-based active learning requires a sampling size, that determines how many in-

stances from the unlabeled pool are queried per epoch. In the case of the RF algo-

rithm, it is essential for lifelong learning to have at least one sample of each class.

Therefore, a sampling size is assigned for each experiment, except for stream-based

sampling, which indicates the minimum number of samples that must be queried.

If not at least one sample from each class is present in the newly queried samples

per epoch, the sampling size is increased. This ensures that a different number of

samples could possibly be queried every epoch. So, for each query strategy, the

active learning could be calculated with a different sampling size.

The active learning process uses different sampling sizes based on the size of the

unlabeled pool. The proportions queried per epoch are 0.01%, 0.1% and 1%. This

is necessary because the active learning is performed on two-class, four-class and

five-class datasets with varying unlabeled pool sizes. Three different sampling sizes

were selected to compare their impact on the models. With 50 epochs, at least 0.5%,

57

Chapter 4 Experimental Results and Evaluation

5%, and 50% of the unlabeled pool is trained. However, due to the lifelong learning

problem with RF, the proportion may change during the process.

In stream-based sampling, one sample at a time is examined to determine whether it

should be queried. However, this approach does not work well with RF and lifelong

learning because gathering enough samples for each class is impossible. To address

this, stream-based sampling is tested only with incremental learning when using RF.

On the other hand, SGD is tested with both incremental and lifelong learning.

In active learning, the aim is to select the most uncertain samples from a large

unlabeled pool. However, not all the queried samples are labeled, even though

a large number of new unlabeled samples are queried during the active learning

process. For instance, if there are 900,000 instances in the unlabeled pool and 5%

of the samples are queried, then 45,000 instances will be queried. The instances

need to be labeled, which can be done by a human expert. However, labeling 45,000

URLs is very laborious. So, a limit of 2000 newly queried URLs is set for labeling.

This limit is represented in the plot by a purple dotted line. The line can be used

to compare different query strategies and determine which strategy yields the best

results when it reaches the limit.

Before SGD could be used, with k-fold cross-validation (subsection 3.2.3), different

usable loss functions were tested. Among these, “hinge” was found to be the most

stable function, resulting in a linear SVM model. The results of SGD with this loss

function for machine learning training and evaluation were quite satisfactory. The

problem of “hinge” is that it does not support probabilistic classification [ZWSL10].

Therefore, the only query strategies that are compatible, are random sampling (pool-

based and stream-based) and clustering. Nevertheless, RF was tested with every

previously mentioned strategy.

In the comparison of the active learning results, four different measurements are

considered to compare the results. These are the maximum accuracy achieved

over the complete active learning process, also known as “Max Acc.”. The accuracy

at the labeling limit (AaLL) represents the accuracy result at the labeling limit of

2000 or just before the limit is reached (see subsection 4.4.1 for further explanation).

The area under curve (AUC) represents the area under the active learning curve

[LWLZ18] and this value is normalized as different sampling sizes are used. The

58

4.4 First Active Learning Experiment

last measurement is the total difference (TD). This is the difference between the

accuracy of a model at the start and end of the active learning process.

To simplify the presentation of the experimental results, we will reduce the number

of used datasets or sampling sizes in the following shown results. The different

datasets are tested to indicate if a higher class count makes it more challenging

for a model to label URLs correctly. If that is not the case, further tests are only

performed on the two-class dataset. This matches the real-world scenario of two

classes (“Benign” and “Malicious”). Additionally, the sampling sizes are compared

to discover differences and to find the overall best to improve a model.

4.4.2 Pool-based Sampling

Figure 4.1: Pool-based Active learning with Random Forest, the two-class dataset
and 50 epochs. Sampling size comparison: 95 vs. 956 vs. 9561

The accuracy results of active learning with pool-based sampling are presented in

Figure 4.1. For the evaluation, the two-class dataset is used with Random Forest

as the machine learning model. Four query strategies, namely Random-, Uncer-

tainty/Least Confident-, Margin-, and Entropy-Sampling are compared.

In the three plots from left to right, the sampling sizes 95 (0.01%), 956 (0.1%),

and 9561 (1%) are used. However, it is important to note that these are only the

minimum values, and the actual sampling size per epoch may be higher. In the

single plots, the query strategies have the same number of new queried samples.

But the sizes per plot vary greatly. For the “RF 95” plot, it is 4800 samples, while

59

Chapter 4 Experimental Results and Evaluation

for the “RF 956” plot, it is 47,850 samples, and for the “RF 9561” plot, it is 478,100

samples in total.

It appears that the active learning process becomes more reliable as more samples

are queried. However, as the number of newly queried samples increases, the steps

become larger, which makes the fluctuations look smaller in the plots.

As mentioned before, the models that worked with random sampling are the baseline,

and in all the cases, they produced a significant increase in the first epochs but

quickly reached a plateau and did not increase much further.

Max Acc. AaLL AUC TD

RF 95 + Random 0.81 0.81 0.81 0.06

RF 95 + Entropy 0.85 0.83 0.82 0.10

RF 956 + Random 0.84 0.81 0.83 0.13

RF 956 + Entropy 0.87 0.83 0.85 0.15

RF 9561 + Random 0.87 0.73 0.87 0.13

RF 9561 + Entropy 0.88 0.73 0.87 0.13

Table 4.5: Accuracy measurements for Figure 4.1. Baseline with all sampling sizes
compared.

In Table 4.5, the maximum accuracy (Max Acc.), accuracy at the labeling limit

(AaLL), area under curve (AUC), and total difference from start to end (TD) are

displayed. There is shown, that the AUC is similar to the maximum accuracy in all

plots. As the sampling size increases, all measurements also increase. However, if

the sampling size becomes too large, the accuracies first remain the same and then

decrease. This implies that the models become worse. This problem is illustrated

by “RF 9561”, where the models produce a higher maximum accuracy than in the

other plots, but the accuracy declines until the model is equal to or worse than the

baseline model. The reason for that could be that the most uncertain instances are

already trained, and at this point, new instances only make the model worse.

All the models start with the same accuracy value and tend to improve over time.

With the exception of the baseline, all other methods produce similar results in the

active learning process. However, the models continue to improve and are generally

better than the baseline, except for “RF 9561” in the last epochs. The overall best

method of these three is Entropy Sampling, which is also compared in Table 4.5

60

4.4 First Active Learning Experiment

with the baseline. The measurements show that Entropy Sampling improves the

model better than the baseline.

The accuracy at the labeling limit indicates a problem with a large sample size. For

“RF 95” and “RF 956”, the accuracy is 81–83%, while for “RF 9561”, the accuracy

is 73%. The pre-trained models already have an accuracy of 73%. The sampling size

is higher than the limit, so the model cannot be fitted before the limit is reached.

In practical cases, it’s best to use a sampling size that’s under the limit to fit new

instances and improve the model earlier.

Figure 4.2: Pool-based Active learning with Random Forest, a sampling size of 956
and 50 epochs. Comparison between the use of two-class- and prepro-
cessed two-class datasets

Figure 4.2 presents two plots. There on RF models, active learning is applied with

a sampling size of 956 and 50 epochs. “RF 956” uses the two-class dataset and the

other plot the preprocessed two-class dataset. The same number of newly queried

samples, 47,850, is used in both cases.

Max Acc. AaLL AUC TD

RF 956 + Random 0.84 0.81 0.83 0.13

RF 956 (preprocessed) + Entropy 0.87 0.83 0.85 0.15

RF 956 + Random 0.83 0.72 0.81 0.49

RF 956 (preprocessed) + Entropy 0.85 0.70 0.81 0.50

Table 4.6: Accuracy measurements for Figure 4.2. Baseline and best method for
both plots are compared.

61

Chapter 4 Experimental Results and Evaluation

The progression of the accuracy curve for the models in both plots is similar. How-

ever, the accuracy results for the models in “RF 956” are higher than in “RF 956

(preprocessed)”. Moreover, the baseline as shown in Table 4.6 is also better. The

model that uses Entropy Sampling in “RF 956” has the best performance, while

in “RF 956 (preprocessed)” there is no clear best method. The model accuracies

are less fluctuating than in the other plot. Furthermore, the baseline is nearly as

effective as the other methods in improving the models.

For the other datasets and sampling sizes, the same effect appears; the models

operating with the preprocessed datasets are worse.

Figure 4.3: Pool-based Active learning with Random Forest, the two-class dataset
and 50 epochs. Full-trained RF models vs. RF models trained with
fewer data. Sampling size of 956.

The plots shown in Figure 4.3 illustrate the process of active learning using pool-

based sampling. The experiments were conducted using a two-class dataset and

50 epochs. The Random Forest models shown in the figures were trained using a

sampling size of 956, and the same models were also trained using the same sampling

size, but only on 50 randomly selected instances instead of the full initial training

set.

Both plots indicate similar accuracy results, and the curves progress in a similar

way. The Max Acc., AaLL, and AUC are also similar. In some cases, the results for

the models with less training data are even better. Additionally, the number of new

queried samples is the same. Similar results were obtained for the other sampling

sizes and datasets as well.

62

4.5 Second Active Learning Experiment

Changing the size of the training set would be, in this case, a great idea. With

less training data, the computational resources get minimized, and the efficiency

rises for the initial training and active learning. As previously mentioned, having

more training data can result in reduced model performance, which is evident in

Figure 4.3. Moreover, if newly queried samples are trained during active learning,

they have a greater impact on the model. This can be observed in the right plot,

where the accuracy curves have larger fluctuating changes.

The SGD model was also tested with active learning. As previously told, only ran-

dom sampling can be used as a query strategy, which declines a proper comparison.

Furthermore, the accuracy results fluctuate heavily. It is possible that the mod-

els require additional fine-tuning. In the comparison of a fully trained SGD model

and an SGD model with less initial training data, the same effect appeared as for

Random Forest.

The actual plan of the first approach is changed. the planned experiments for active

learning are utilized with the same settings, but the initial training set is reduced

to 50 random instances from the actual training set.

4.5 Second Active Learning Experiment

The second experimental approach is similar to the first one. All three refined

datasets are used, but data preprocessing is not used further based on the results of

experiment one. The results of the pre-trained models were lower than those of the

models with the original datasets, and the active learning results were also worse.

In the first experiment, we trained the models using the entire training set, which

consisted of over 100,000 labeled URLs. In a real-world situation, a big dataset of

URLs can be given, but these URLs are typically unlabeled. Labeling these URLs

requires the expertise of a human. Using around 50 to 100 URLs as an initial

training set is more realistic. For this experiment, we used the same initial training

set but trained the model using only a random sample of 50 URLs from the training

set.

We have discovered that the initial training with a large number of URLs, such

as 100,000, is not effective. This is because the model is already trained with a

63

Chapter 4 Experimental Results and Evaluation

significant amount of data, and adding more URLs, such as 1000 newly queried

URLs, does not make a big difference in the model’s continuous learning over the

epochs. Furthermore, as explained in section 4.3, the more data is initially trained,

the worse the model’s accuracy. One reason for this could be that the model is

trained with URLs that have no positive impact on improving the model for better

URL labeling.

In this experiment, we have utilized seven different feature extraction methods along

with two classifiers, RF and SGD.

For that, again, tables of accuracy results for both classifiers are calculated. RF

is shown in Table 4.7 and SGD in Table 4.8. The best results per dataset are

marked in green. Additionally, the feature extraction methods are abbreviated (e. g.

feature ex1 = fe1).

Dataset fe1 fe2 fe3 fe4 fe5 fe6 fe7

two class dataset 0.624 0.514 0.650 0.364 0.391 0.361 0.589

four class dataset 0.232 0.215 0.452 0.325 0.160 0.151 0.186

five class dataset 0.599 0.676 0.723 0.773 0.673 0.676 0.518

Table 4.7: Accuracy results of pre-trained RF model after feature extraction

Dataset fe1 fe2 fe3 fe4 fe5 fe6 fe7

two class dataset 0.628 0.608 0.601 0.338 0.746 0.727 0.408

four class dataset 0.771 0.440 0.388 0.298 0.167 0.171 0.166

five class dataset 0.657 0.722 0.704 0.724 0.628 0.696 0.560

Table 4.8: Accuracy results of pre-trained SGD model after feature extraction

To determine which feature extraction method is the best, the two measurements

are again considered. The first measurement is the average of a method over six

datasets. The second measurement determines how often an extraction method

produces the highest result for a dataset (indicated by green marks).

In the evaluation of two different classifiers, feature ex3 yielded the highest av-

erage result for RF, while feature ex1 yielded the highest for SGD. Additionally,

feature ex3 had two instances of the highest result on a dataset, while feature ex1

64

4.5 Second Active Learning Experiment

had only one. We will consider, in this case again, the average accuracy on both

classifiers. For feature ex3 an average result of 0.586 is reached and for feature ex1

an average of 0.585. To conclude, both got similar results in the measurements,

but feature ex3 had a higher frequency of obtaining a higher result on a dataset.

This feature extraction method combines the features of feature ex1 and feature ex2,

shown in subsection 3.2.2. This method is further used to calculate the features used

in the model training and active learning.

4.5.1 Additional Information

The second experiment used fewer data and skipped the data preprocessing step,

but otherwise had the same additional information as the first experiment (see sub-

section 4.4.1).

4.5.2 Pool-based Sampling

Figure 4.4: Pool-based Active learning with Random Forest, the two-class dataset
and 50 epochs. Sampling size comparison: 95 vs. 956 vs. 9561

The accuracy results of active learning with pool-based sampling are presented in

Figure 4.4. For the evaluation, the two-class dataset is used with Random For-

est as the machine learning model. Four query strategies are utilized: Random-,

Uncertainty/Least Confident-, Margin-, and Entropy-Sampling.

65

Chapter 4 Experimental Results and Evaluation

The experiment is equivalent to the one displayed in the first experiment section in

Figure 4.3 where sampling sizes of 95, 956, and 9561 were compared. For the query

strategies, the same sample count is used per epoch. For the “RF 95” plot, it is

4800 samples, while for the “RF 956” plot, it is 47,850 samples, and for the “RF

9561” plot, it is 478,100 samples in total.

Max Acc. AaLL AUC TD

RF 95 + Random 0.81 0.81 0.80 0.13

RF 95 + Entropy 0.84 0.83 0.82 0.16

RF 956 + Random 0.83 0.81 0.83 0.16

RF 956 + Entropy 0.86 0.81 0.85 0.18

RF 9561 + Random 0.85 0.67 0.85 0.18

RF 9561 + Entropy 0.87 0.67 0.85 0.17

Table 4.9: Accuracy measurements for Figure 4.4. Baseline and the best method
with all sampling sizes are compared.

In Table 4.9, the maximum accuracy (Max Acc.), accuracy at the labeling limit

(AaLL), area under curve (AUC), and total difference from start to end (TD) are

displayed.

As stated in section 4.4, the curve progressions are comparable to those of the

same experiment in the first experiment section (Figure 4.3). Only the accuracy

results and measurements are different, but for further evaluation, please refer to

that section.

In Figure 4.5 we observe again active learning with pool-based sampling. Random

Forest and the same query strategies are used, but now with the four-class dataset.

The accuracy results for the different query strategies in this figure differ significantly

from those of the two-class dataset. The curves here have a distinct progression.

The curves of “RF 45” and “RF 455” are relatively similar. Throughout the process,

Least Confidence and Entropy Sampling appear to be weaker strategies than Ran-

dom Sampling, as they more unstable over the epochs. Conversely, Margin Sampling

yielded better results than Random Sampling.

66

4.5 Second Active Learning Experiment

Figure 4.5: Pool-based Active learning with Random Forest, the four-class dataset
and 50 epochs. Sampling size comparison: 45 vs 455 vs 4558

Max Acc. AaLL AUC TD

RF 45 + Random 0.81 0.80 0.80 0.23

RF 45 + Margin 0.83 0.82 0.81 0.25

RF 455 + Random 0.84 0.83 0.83 0.27

RF 455 + Margin 0.87 0.83 0.85 0.29

RF 4558 + Random 0.87 0.57 0.86 0.30

RF 4558 + Margin 0.89 0.57 0.86 0.26

Table 4.10: Accuracy measurements for figure Figure 4.5. Baseline and best method
compared with sampling sizes 45, 455 and 4558.

Table 4.10 demonstrates that Margin Sampling performs at least as good as the

baseline, but in most measurements, better. The total difference is also higher than

that of the baseline and increases with the sampling size.

In terms of curve progression, “RF 4558” has the same pattern as “RF 9561”, except

that Entropy Sampling does not increase over 85% and decreases after some epochs.

It performs worse than the baseline and obtains a similar curve to Least Confidence-

and Margin Sampling in the last epochs. Least Confidence- and Margin Sampling

reaches nearly 90% in the maximum value. However, the sampling size is again

above the labeling limit, which means that it may not be practical to use in real-life

scenarios.

67

Chapter 4 Experimental Results and Evaluation

Figure 4.6: Pool-based Active learning with Random Forest, the five-class dataset
and 50 epochs. Sampling size comparison: 8 vs 81 vs 810

Figure 4.6 also represents active learning with pool-based sampling, where Random

Forest and the same query strategies are used, but with a five-class dataset. It’s

worth noting that the test set is taken from the same dataset as both training sets,

which means that the test set has a similar structure and features to the instances

the models are trained on before active learning.

For some models in the plots, active learning does not reach the labeling limit,

but that is not problematic. “RF 810” has a smaller sampling size than the labeling

limit, but has a similar curve progression as for the two-class- and four-class datasets.

The main difference is that the models can be trained before the limit is reached,

resulting in a higher accuracy.

In the plots “RF 8” and “RF 81”, all models reach similar or higher results than the

baseline model. The models with Margin Sampling got the best results. Especially

in “RF 8”, the results of Margin Sampling are higher, although it has reached almost

half the count of new samples of the labeling limit.

Table 4.11 presents, that the models with Margin Sampling have higher accuracy

for almost all four measurements than the baseline. Generally, the accuracy values

increase as more samples are queried per epoch. However, with a sampling size of

455, Margin Sampling achieves the highest accuracy at the labeling limit, making it

more practical for real-world use cases. It’s worth noting that “RF 810” shows that

a larger sampling size can increase accuracy values, but at the cost of sabotaging

68

4.5 Second Active Learning Experiment

Max Acc. AaLL AUC TD

RF 8 + Random 0.73 0.72 0.72 0.13

RF 8 + Margin 0.82 0.82 0.80 0.15

RF 81 + Random 0.79 0.79 0.78 0.16

RF 81 + Margin 0.87 0.86 0.85 0.18

RF 810 + Random 0.87 0.84 0.86 0.18

RF 810 + Margin 0.91 0.82 0.88 0.16

Table 4.11: Accuracy measurements for Figure 4.6. Baseline and best method com-
pared with all sampling sizes.

the model’s improvement over time. Therefore, the total difference of the Margin

Sampling model is worse than the baseline.

Figure 4.7: Pool-based Active learning with RF and SGD, the two-class dataset and
50 epochs. RF and SGD comparison with a sampling size of 956

In Figure 4.7, we compare the active learning process between Random Forest (RF)

and Stochastic Gradient Descent (SGD) on a two-class dataset using pool-based

sampling. As explained earlier, SGD cannot work with probabilistic query strategies,

so only random sampling is utilized and compared for RF and SGD. During the

active learning process, we observe that SGD shows inconsistency and randomness,

which leads to fluctuating accuracy results. However, as we explained in the first

experiment section, fine-tuning of the SGD models could be a solution to overcome

this issue.

69

Chapter 4 Experimental Results and Evaluation

Max Acc. AaLL AUC TD

RF 95 + Random 0.83 0.81 0.83 0.16

SGD 95 + Random 0.78 0.78 0.52 -0.10

Table 4.12: Accuracy measurements for Figure 4.7. The baseline of RF and SGD
compared with a sampling size of 95

Table 4.12 illustrates that, in general, RF achieved greater improvement, as evi-

denced by higher measurement values. SGD produced similar results on the other

datasets. Because of the strong fluctuations in accuracy through active learning,

the TD can be highly positive or highly negative. In general, the SGD model does

not improve over time.

4.5.3 Stream-based Sampling

As previously explained, Random Forest cannot be utilized with stream-based sam-

pling in combination with lifelong learning. Additionally, for SGD only random

sampling can be used.

Figure 4.8: Stream-based Active learning with RF and SGD, the two-class dataset
and 50 epochs. RF (no lifelong learning) and SGD comparison

Figure 4.8 displays stream-based active learning of RF compared to SGD. For RF,

incremental learning is utilized with random sampling, and for SGD, lifelong learning

with random sampling. Active learning is executed with the two-class dataset and

50 epochs.

70

4.5 Second Active Learning Experiment

Max Acc. AaLL AUC TD

RF + Random 0.72 0.69 0.68 0.01

SGD + Random 0.68 0.66 0.56 0.22

Table 4.13: Accuracy measurements for Figure 4.8. The baseline of RF and SGD
compared with a sampling size of 95

Table 4.13 displays that the RF baseline delivered better results than the SGD

baseline. In addition, the RF baseline had a small Total Deviation (TD) whereas

the SGD baseline had a high TD. The accuracy of the SGD model varied a lot over

the epochs, but there was no general positive increase displayed, which means that

the TD could also be the same value in the negative area, similar to pool-based

sampling.

The SGD models working with four-class and five-class datasets displayed a similar

curve progression as the model with the two-class dataset has shown here. The

accuracy results are only slightly different.

Figure 4.9: Stream-based Active learning with RF, the two-class, four-class, and
five-class dataset and 50 epochs.

The graphs in Figure 4.9 showcase the results of stream-based active learning with

RF on all three datasets. These results were obtained using 50 epochs and only

incremental learning.

71

Chapter 4 Experimental Results and Evaluation

Max Acc. AaLL AUC TD

RF Two Class + Random 0.72 0.69 0.68 0.01

RF Two Class + Entropy 0.72 0.72 0.70 0.05

RF Four Class + Random 0.78 0.76 0.74 0.19

RF Four Class + Entropy 0.78 0.78 0.76 0.20

RF Five Class + Random 0.74 0.74 0.71 0.02

RF Five Class + Entropy 0.74 0.75 0.72 0.03

Table 4.14: Accuracy measurements for Figure 4.9. Baseline and best method com-
pared.

It has been observed that models using Least Confidence- and Margin Sampling

techniques display fluctuating accuracy changes during active learning for both two-

class and four-class datasets. These models experienced a significant decrease in

accuracy but eventually ended up with a value similar to the other models. Models

that did not use the baseline method did not perform significantly better during

active learning. Some strategies even resulted in worse outcomes than the baseline.

The measurement results for the four-class dataset were higher than for the other

datasets, with the models showing greater improvement, possibly due to the initial

low accuracy.

Entropy Sampling was found to be the most effective method, consistently producing

great improvements in stream-based sampling contexts. Generally, the models saw

an improvement of no more than 5% with stream-based sampling, except for the

four-class dataset, where the initial accuracy was very low in comparison.

4.5.4 Query-by-Committee

As mentioned earlier, the query strategies used for Query-by-Committee (QBC)

cannot be employed with SGD. Therefore, only the RF model can be utilized. For

QBC, multiple models are required to create a committee (see the definition of QBC

in subsection 2.7.2), so two different RF models are created. Both use a tree size

of ten in the initialization and for one model, the criterion is changed from “Gini

impurity” to “Logarithmic loss”. The criterion is used to determine how to split the

data at each step of building a tree. Both models are also provided with different

72

4.5 Second Active Learning Experiment

initial training data. From the initial training set, two sets of 50 instances are

randomly selected.

Figure 4.10: Active learning with Query-by-Committee, the two-class, four-class,
and five-class dataset and 50 epochs. Sampling size comparison: 95 vs.
956 vs. 9561

In Figure 4.10 active learning with query-by-committee is displayed. There the

explained committee is utilized with the two-class dataset and 50 epochs. The new

queried samples per epoch are 27,194 samples for “RF Comm. 95”, 47,850 for “RF

Comm. 956” and for “RF Comm. 95” the sample count is 478,100. The same

sample count for all models of one plot.

Max Acc. AaLL AUC TD

RF Comm. 95 + Vote Entropy 0.84 0.83 0.83 0.38

RF Comm. 956 + Vote Entropy 0.86 0.83 0.83 0.22

RF Comm. 9561 + Vote Entropy 0.87 0.63 0.86 0.22

Table 4.15: Accuracy measurements for Figure 4.10. Best method with sampling
size 96, 956, and 9561

As in pool-based sampling already described, a sampling size above the labeling

limit of 2000 is not recommended because the models cannot be improved before the

labeling limit is reached. That renders them unusable for practical purposes, which

also applies to “RF Comm. 9561”. The curve progression for Vote Entropy- and

Consensus Entropy Sampling are quite similar overall. With both query strategies,

the accuracy rises fast in the first epoch and then nearly stagnates. In “RF Comm.

73

Chapter 4 Experimental Results and Evaluation

9561” for both strategies, model accuracies only decrease once they reach the highest

accuracy value. Max Disagreement Sampling did not perform as well as the other two

query strategies. In “RF Comm. 95”, way more queries are sampled per epoch, and

the accuracy decreases before the labeling limit and is worse than at the beginning.

On the other hand, the Max Disagreement models show an increase in accuracy

in the other two plots. However, Max Disagreement sampling is found to be less

effective than other query strategies. The best method for all sampling sizes is Vote

Entropy Sampling.

4.5.5 Clustering

As previously described, clustering is utilized with the CLARA algorithm. There

are two types of approaches, that are tested. One is named “Training” and the

second is named “Sampling”.

In the “Training” approach the clustering is used to filter the entire initial training

set. Fifty clusters are built, and the medoids of these clusters are selected as the

initial training set for the model. Active learning is then utilized with Random-,

Least Confidence-, Margin- and Entropy Sampling. However, it’s important to note

that SGD can only be used with random sampling.

The “Sampling” approach, on the other hand, uses clustering as a query strategy.

This means that the unlabeled pool is split into 50 clusters each epoch, and the

medoids are taken as the newly queried samples. To compare the performance of

the two approaches, four models are created and processed differently. The first

model is trained as usual, and then pool-based random sampling is applied. For

the second model, the initial training set is filtered as in the “Training” approach

and random sampling is utilized. The third model is trained as usual, and then

clustering is used for sampling. Lastly, the fourth model uses cluster filtering for the

initial training set and cluster sampling for the unlabeled pool.

The plots in Figure 4.11 illustrate the clustering approach “Training”. The models

are utilized with RF, all three datasets and a sampling size of 0.1% of the unlabeled

pools of the different datasets. That implies a sampling size of 956 for the two-class

dataset, 455 for the four-class, and 81 for the five-class dataset. The new queried

samples per epoch per plot are 47,850 samples, 23,206 samples, and 4921 samples.

74

4.5 Second Active Learning Experiment

Figure 4.11: Cluster model training and pool-based Active learning with RF, the
two-class, four-class, and five-class dataset. A sampling size of 0.1% of
the unlabeled pool and 50 epochs used.

Max Acc. AaLL AUC TD

RF 956 Two Class + Random 0.83 0.81 0.82 0.40

RF 956 Two Class + Margin 0.86 0.82 0.84 0.28

RF 455 Four Class + Random 0.84 0.83 0.83 0.56

RF 455 Four Class + Margin 0.87 0.83 0.84 0.61

RF 81 Five Class + Random 0.78 0.77 0.77 0.04

RF 81 Five Class + Margin 0.87 0.86 0.85 0.12

Table 4.16: Accuracy measurements for Figure 4.11. Comparison of baseline and
best method with a sampling size of 0.1%

Depending on the starting values, the models from “RF 956 Two Class” and “RF 455

Four Class” have a great improvement through active learning. The two-class models

start from around 40-60% and the four-class models from around 20-40%. In “RF

956 Two Class” all models except the baseline have a similar curve progression and

perform better than the baseline. In “RF 455 Four Class”, the accuracy results were

extremely diverse. All models initially improved greatly, but the Least Confidence

and Entropy Sampling models performed worse over time than the baseline. The

models of “RF 81 Five Class” presented significant differences. The models using

Least Confidence and Entropy Sampling were unstable at first, but they improved

over the epochs and achieved better results than the baseline model. On the other

75

Chapter 4 Experimental Results and Evaluation

hand, the Margin Sampling models were the best performing overall. They were

consistent and benefited greatly from active learning.

As in the previous approaches, SGD did not perform well with active learning, and

the accuracy results were again strongly fluctuating.

Figure 4.12: RF with the two-class dataset, a sampling size of 956 and 50 epochs.
“Sampling” approaches compared.

Figure 4.12 displays the clustering approach “Sampling”. The models are utilized

with RF, the two-class dataset, 50 epochs, and a sampling size of 956. For the

approaches random pool-based and cluster training, the queried sample count is

46,894. On the other hand, the queried sample count for the cluster sampling

approach is the product of the number of epochs and the number of clusters, both

of which are 50, resulting in a count of 2500.

Max Acc. AaLL AUC TD

Random pool-based 0.83 0.82 0.83 0.22

Cluster Training + Random pool-based 0.83 0.82 0.82 0.40

Cluster Sampling 0.80 0.80 0.80 0.32

Cluster Training + Cluster Sampling 0.80 0.80 0.79 0.57

Table 4.17: Accuracy measurements for Figure 4.12. Comparison of RF with sam-
pling size 956 and the four approaches of “Sampling”

The plots and the results in Table 4.17 observed that the accuracy outcomes of the

models using different learning approaches do not differ significantly. The models

exhibit a similar pattern, with the accuracy rising rapidly at the beginning of the

76

4.6 Discussion

active learning process and then plateauing. Therefore, none of the models seem to

improve with more epochs. The standard-trained and clustering-trained models have

slightly higher results in the measurements than the clustering sampling models.

Although the cluster sampling models used fewer queried samples per epoch, their

accuracy was slightly lower at the labeling limit. The TDs varied significantly,

mainly due to the different starting values. The lower the starting value, the more

significant the model improvement.

The SGD models are again strongly fluctuating, even with the “Sampling” ap-

proaches. This observation is consistent with other active learning approaches.

4.6 Discussion

Firstly, will summarize the results of the experiments.

The first experiment was short but already produced some helpful results. The ini-

tial model training demonstrated that preprocessing the datasets does not generally

improve them. Some accuracy results were better, while others were worse than the

original datasets. The feature extraction methods also produced feature datasets

that caused very different accuracy results after the initial model training. From

around 20% up to 97% is everything included. Random Forest and Stochastic Gra-

dient Descent had similar results on most datasets. For the two-class dataset, up

to 71.5% accuracy is reached. For the four-class dataset, the accuracy was around

40%, but SGD has got up to 78%. For the last, the five-class dataset, higher results

were calculated up to 97%. The best feature extraction method for these settings

was feature ex5. The active learning is limited here to the pool-based sampling. The

experiment was discontinued after two problems occurred. Firstly, in active learn-

ing, models with the original datasets produced higher accuracy results compared

to models that used preprocessed datasets. Secondly, similar results were obtained

in a comparison of RF and SGD with full initial dataset training and small initial

dataset training (50 randomly selected instances). Therefore, the second experiment

was initiated due to its lower computational resource usage, higher efficiency, and

better initial performance.

77

Chapter 4 Experimental Results and Evaluation

In the second experiment, the same settings as in the first were used, but the data

preprocessing step was skipped, and the initial training set was reduced to 50 in-

stances. The accuracy results for both classifiers were similar once again. The

accuracy for the two-class dataset was up to 74%, while for the four- and five-class

datasets the accuracy was up to 77%. In general, SGD produced better results than

RF. The best feature extraction method was feature ex3.

For active learning, pool-based sampling, stream-based sampling, query-by-

committee, and clustering are tested. In the pool-based sampling, the three different

datasets (two-class-, four-class- and five-class dataset) are tested at 3 different sam-

pling sizes (0.01%, 0.1%, and 1%). The first thing that was discovered is that if

the sampling size exceeds the labeling limit of 2000, the models cannot be improved

through active learning and produce better results after the labeling limit is already

reached. First, the RF model results are presented.

Max Acc. AaLL AUC TD

Two-class dataset 0.87 0.83 0.85 0.18

Four-class dataset 0.89 0.83 0.85 0.30

Five-class dataset 0.91 0.86 0.88 0.18

Table 4.18: Highest accuracy measurements for pool-based sampling

Table 4.18 displays the highest results achieved for various measurements across dif-

ferent datasets. The results were obtained from different models in one comparison

or plot. Nevertheless, the best query strategy overall for the two-class dataset was

Entropy Sampling and the best model was “RF 956 + Entropy Sampling”. For the

four-class dataset, Margin Sampling performed the best, and “RF 455 + Margin

Sampling” was the best model. For the five-class dataset, Margin Sampling per-

formed the best, and “RF 81 + Margin Sampling” was the best performing model.

The SGD algorithm did not perform well when using the only viable query strategy,

random sampling. The model’s performance fluctuated significantly and did not

show any improvement with more epochs. Although the two-class dataset showed an

improvement of 18%, the other measurements were much worse than the comparable

RF model used with random sampling. For the other datasets, the results were not

different.

78

4.6 Discussion

For the stream-based sampling, the three datasets are also tested with an exact

sample count of 50. So, way fewer samples are queried through active learning than

in pool-based sampling. A comparison was created between RF and SGD using the

two-class dataset. The RF models did not show much improvement, while Entropy

Sampling proved to be the best query strategy with a 5% improvement and the

highest accuracy was 72%. In contrast, the SGD model showed an improvement

of 22% with random sampling, but the maximum accuracy attained was only 68%.

The SGD model also demonstrated significant fluctuations, which did not necessarily

mean that the model improved with more epochs.

Another comparison was done using RF and all three datasets. All models started

with high accuracies, with the two-class dataset at 67%, the four-class dataset at

57%, and the five-class dataset at 71%. For the two-class and five-class datasets, the

improvement remained below 10% or sometimes even below 5%. On the other hand,

the four-class dataset models showed an improvement of 17-22%. However, none of

the models achieved an accuracy value above 80% with stream-based sampling.

Query-by-Committee was utilized with a committee of two RF models. Both models

had slightly different parameters and different initial training data. The active learn-

ing process was conducted using a two-class dataset, and all three sampling sizes

(95, 956, and 9561) were compared. Max Disagreement sampling turned out to be

the worst method, as it decreased the accuracy of the model that used a sampling

size of 95. Vote Entropy- and Consensus Entropy Sampling produced similar curve

patterns. However, Vote Entropy was the most effective method overall, with the ac-

curacy of the models reaching over 80% at the end. No Stochastic Gradient Descent

(SGD) was used because the query strategies employ probability calculations.

In Cluster Sampling, two approaches are compared: “Training” and “Sampling”.

In the “Training” approach, both RF and SGD are tested on all three datasets,

using a sampling size of 0.1% (proportional to the unlabeled pools). The RF models

showed a significant increase in accuracy, but the fluctuation of results increased

when more classes were involved for some strategies. The Least Confidence and En-

tropy Sampling methods were very fluctuating with the four and five-class datasets.

However, the models using Entropy Sampling showed the most improvement. They

were consistently better than the baseline throughout the process and achieved the

highest measurement results of around 80%. SGD did not perform well and showed

fluctuating accuracy results like in other active learning approaches.

79

Chapter 4 Experimental Results and Evaluation

The results of the “Sampling” approach were not impressive for both RF and SGD.

In this experiment, a two-class dataset was used with a sampling size of 956. The

curve patterns of the different models during the active learning process were sim-

ilar. Initially, the models improved rapidly to high values, but then the accuracy

stagnated. Overall, the measurement values were above 80%. The cluster sampling

models used fewer new queried samples per epoch, but at the labeling limit, they

didn’t deliver better results than the pool-based sampling baseline model and the

cluster training model. The SGD models produced in this approach also fluctuating

results.

The preprocessing steps from related work did not lead to any improvement in the

datasets for better results in machine learning evaluation. This was observed both

after the initial training and in the active learning phase. It is possible that the

full URLs might provide further information or features that can be extracted and

learned by the machine learning models. Another possibility is that the preprocess-

ing steps made the features corresponding to the classes more ambiguous, which

means that the model had difficulty in understanding which features mirror which

class the most. This resulted in the test set being more difficult to label.

In the first experiment, it was observed that different feature extraction methods

produced diverse results, with differences of up to 40-50%. The best results for

Random Forest were achieved at 30-100%, while for Stochastic Gradient Descent,

the range was 40-100%. The four-class dataset performed worse than the other

datasets. If the same refinement were applied to the five-class dataset, it would also

likely perform worse. Preprocessing the dataset did not improve the results, and

both classifiers produced similar good results. The method feature ex created the

best features overall. Active learning tests demonstrated that models with prepro-

cessed datasets improved less, and using a lower initial training set of 50 instances

yielded similar improvements compared to using the full training set. This approach

reduces the number of datasets that need to be tested, requires fewer computational

resources, and improves the efficiency of the approaches.

In the second experiment, it was observed that the accuracy results on the pre-

trained models were similar to those of the first experiment. However, the best

features were created by feature ex3. The experiment also revealed that increasing

the sampling size resulted in higher accuracies of the models. However, if the sam-

pling sizes are too high, the accuracy at the labeling limit worsens and the model’s

80

4.6 Discussion

accuracy decreases after the highest value is reached. This is because more samples

are added per epoch, which makes the model learn faster, and more diverse data

is fitted to distinguish the feature structure for the different labeled URLs. On the

other hand, a model can only be improved after the labeling limit is reached, so

incremental learning cannot work properly. The decrease in accuracy after reaching

high accuracy values can be explained by the imbalanced datasets. With more fit-

ted data, the model is overfitting, which allows the model to perform better on the

training set, but not on other datasets.

Different datasets with varying numbers of classes were used to test if models per-

formed worse in labeling URLs as the number of classes increased. The curve pat-

terns of the models with the same sampling size proportion were similar across

different datasets, but the accuracy values and fluctuations differed between query

strategies.

It’s worth noting that during the labeling process, a model assigns a percentage to

each class indicating how likely it is that the URL belongs to that class. For instance,

a URL could be 70% malicious and 30% benign. The model can assign a total of

100% to all classes, but not more. If there are only two classes, the percentage

change for each class is linear, making it easier for the model to assign percentages

and resulting in similar active learning results for different query strategies. If more

classes are available, the 100% needs to be distributed among more classes, leading to

more variability in the results of the query strategies. This was observed in the pool-

based sampling experiments. The curves for models working with two-class datasets

were similar, despite using different query strategies. For models using four-class

and five-class datasets, some strategies consistently produced great accurate results,

while others were more inconsistent, and the results of the models varied more from

each other. It is also possible that the different datasets used for refinement are a

reason for the disparity in the results obtained. These datasets have varying numbers

of URLs, and the diversity of the URLs can also differ significantly. For instance,

the four-class dataset has fewer URLs in the training set and the remaining sets,

in comparison to the two-class dataset. Additionally, the URLs in the training set

of the four-class dataset may be less varied than those in the test set, making the

test set more complex and harder to label. This could explain the lower accuracies

observed after initial model training, as well as the higher number of classes. Active

learning methods yield similar high results, around 80-90%, as with the two-class

81

Chapter 4 Experimental Results and Evaluation

dataset. On the other hand, the five-class dataset is not refined like the other two,

so the domain shift problem is not solved. This would make URL labeling easier,

as shown by the high results above 90% after initial model training. However, the

dataset consists of much fewer data than in the other datasets, resulting in fewer

different URLs available to train a model accordingly in the initial training and in

the active learning. This could be a reason for the higher results on one side with

some query strategies and lower results on the other.

The SGD classifier performed well during model evaluation after the initial training,

but when it came to active learning, the results were inconsistent. It’s possible that

SGD or the specific loss function is not suitable for active learning, or fine-tuning

of the models is needed. On the other hand, Random Forest worked great in active

learning, producing the best results between 80-90%, even at the labeling limit.

Stream-based sampling faced the issue of fewer queried samples, which could be used

to improve the model. This method checks only one instance at a time to see whether

it should be queried or not, making it very inefficient. Pool-based and stream-

based sampling had similar runtimes with the used settings. However, the accuracy

results of the models with stream-based sampling increased slightly for most models

and never reached 80%. As a result, the measurement results were all worse than

the model with pool-based sampling. The QBC models produced great results,

improving accuracy up to over 80%. Cluster training involves training models with

the most representative instances from the clusters, the medoids. Initially, the

models are trained with the same number of instances. However, the results of

the initial training were not as high compared to models that use randomly selected

instances for training. The accuracy improvements through active learning were also

not significantly higher for the cluster-trained models. Cluster sampling improved

the models fairly well, but it did not achieve the accuracy levels of standard model

training and pool-based sampling.

Pool-based sampling and QBC produced the most favorable outcomes. The highest

accuracy results are achieved with a sampling size proportion of 1%, but for practical

purposes, 0.1% proved to be the most effective, particularly when reaching the

labeling limit while aiming for high accuracy.

82

Chapter 5

Conclusions

The previous chapter summarizes and concludes the two experiments. In this chap-

ter, we discuss the research questions and their answers.

RQ 1: Which preprocessing steps can be added to improve the Classifi-

cation of malicious URLs?

In the experiments, different preprocessing steps are combined and tested. Fur-

thermore, clustering was used to filter the initial training-set, which is also like a

preprocessing step. Both approaches had no positive impact on the models’ accu-

racy in the initial model training and evaluation, as well as in the active learning.

The preprocessing steps probably reduced the information that could be extracted

from the URLs or made the features more unclear, which means the models are less

sure about which features represent which class.

RQ 2: Which feature extraction methods are most suitable for URL

Labeling?

Heuristic approaches, as well as natural language processing feature extraction meth-

ods, are tested and compared with each other. There is no clear best method. It

depends on the size, diversity, and number of classes in the datasets. Additionally,

the accuracy results are linked to the used machine learning classifier. Even then,

83

Chapter 5 Conclusions

the accuracy results sometimes are way different or pretty similar. For the full ini-

tial training set the best method was feature ex5 (TF-IDF vectorization) and for

the smaller set feature ex3 (Heuristic approach and combination of feature ex1 and

feature ex2).

In active learning, no difference between the first and second experiments was discov-

ered. With different extraction methods, similar model improvement was reached.

RQ 3: Is Natural Language Processing (NLP) usable for feature extrac-

tion with URL data?

As already mentioned for the previous question, natural language processing worked

well for feature extraction with URL data. Vectorization performed sufficiently and

achieved high results in the initial training.

The used BERT transformer did not perform as expected. The created embeddings

should contain more information about the URLs than the other extraction methods

could extract, but the produced results on the pre-trained models were compared

to the other methods as well as these or worse. The reason could be that the

embeddings were not correctly calculated or transformed into feature vectors, or the

features are too complex for the models.

RQ 4: Which machine learning classification models are appropriate for

URL Classification?

The Random Forest- and Stochastic Gradient Descent Classifier were tested in the

experiments. Both were consistent during the k-fold Cross Validation and produced

bad to great results in the initial model training and evaluation. The results depend

on the used dataset and feature extraction method.

For active learning, SGD produced fluctuating accuracy results in every approach.

This classifier or the utilized loss function is not usable with active learning or the

models were not properly fine-tuned. The RF models improved well through active

learning, depending on the used approach, query strategy, dataset, and parameter

(sampling size, epochs).

84

No special tests were done for the efficiency, but both classifiers were efficient in the

initial model training.

RQ 5: Which query strategies perform the best for URL Labeling?

SGD did not work well with active learning, so the following results are only for

Random Forest. Four approaches with different query strategies were tested. Over-

all, pool-based sampling and Query-By-Committee (QBC) improved the models the

best. Over 80% accuracy was reached. Except QBC, Least Confidence-, Margin-

and Entropy-Sampling were used in the other approaches. Both Margin- and En-

tropy Sampling produced the best results. They were more consistent and created

the best improvement for different experimental settings. For QBC Vote Entropy-

and Consensus Entropy produced pretty similar results, but overall Vote-Entropy

improved the models better.

RQ 6: How can clustering be utilized for URL Labeling?

As in the second experiment explained, the clustering is tested for filtering the

training data and as the query strategy. The models that were initially trained on

the filtered data performed similarly to the standard trained models. Clustering for

sampling the unlabeled pool improved the corresponding model significantly, but

the results were worse than in the pool-based sampling. Therefore, clustering can

be used as an additional preprocessing step before actual initial model training or

as a query strategy in active learning. However, another clustering approach or

different experimental settings may be needed to improve the results.

RQ 7: Should lifelong learning be integrated into the project?

Both experiments use incremental and lifelong learning. The classifiers were selected

especially because they support lifelong learning. SGD can easily be used with

lifelong learning because partial fitting can be used, but as previously mentioned,

the accuracy results of the trained models strongly fluctuate. So only Random Forest

can be evaluated.

85

Chapter 5 Conclusions

The models improved pretty well during the incremental active learning process. If

there is a labeling limit of new queried samples, the sampling size may not be above

the limit, else the model cannot be improved before the limit is reached.

Lifelong learning worked for both models (even if SGD fluctuates). The actual ben-

efit is that the efficiency of the models should be constant because the same number

of new samples are trained per epoch, and not the whole training set needs to be

trained again. So the difference between incremental- and lifelong learning should

be, that the time consumed for calculations is lower over time for the lifelong learn-

ing, but the results for both are the same. The efficiency compared to incremental

learning is not directly measured, so that cannot be answered. But previously, al-

ready two problems for RF models with lifelong learning were explained. First, the

algorithm used needs, per epoch, at least one sample of each class, which increases

the count of queried samples. Second, the algorithm did not extend the already

created trees but added new trees every epoch to improve the model during the

training. In incremental active learning, the queried sample count and the tree size

do not need to be increased, so different accuracy results are produced if both ap-

proaches are compared. So first, another RF implementation is needed that solves

the problems, or other classifiers are needed that support lifelong learning.

86

Chapter 6

Future work

This chapter lists tasks that need to be accomplished in the future. These tasks were

determined during the testing phase of the thesis and the experiments. Some of these

tasks were not considered before due to time constraints, while others emerged as a

result of the experimental findings.

The tasks listed below are assigned to the main steps that were tested in this thesis.

6.1 Data Preprocessing

The implemented preprocessing steps did not yield positive results in the experi-

ments. Therefore, it might be useful to test each step independently to determine

if any of them can improve models when used alone. This would help identify if a

specific method is responsible for the problem. Additionally, it may be beneficial to

try out other preprocessing methods from related work.

The clustering used for filtering the initial training set did not work either. It may

be worth trying a different clustering technique or alternative method to filter the

initial training set. If none of these methods improve the accuracy of the model, then

the training set might be too small to be meaningful, and certain URLs may have

an unnecessary impact. In this case, it may not matter how diverse or uncertain the

initial training data is.

87

Chapter 6 Future work

6.2 Feature Extraction

In general, the results with the different feature extraction methods were great, there

was no particular method, that was worse than the other.

However, it might be beneficial to search for more heuristic approaches from related

work and implement them, in order to combine more features, similar to what was

done in feature ex3. Alternatively, it could be worthwhile to test other feature

selection algorithms, or to improve the current one in feature ex4 by fine-tuning it

to select the best features for the given task.

Furthermore, the TF-IDF and Count-Vectorization algorithms could also be further

optimized by fine-tuning them.

It might also be useful to search for and implement other transformers, specifically

those designed for processing URL data or similar types of data. Additionally, a

cased transformer model could be created for URL data. BERT can also be used

for that task.

6.3 Machine Learning

The experiments have indicated that Random Forest (RF) and Stochastic Gradient

Descent (SGD) algorithms have produced great models. However, the RF algorithm

is not ideal for lifelong learning and the SGD algorithm cannot be used for active

learning in its current configuration. Therefore, we should search for and imple-

ment an RF algorithm that overcomes the challenges mentioned in the experiments

chapter. To address the issue with active learning, we can test hyper-tuning or

modification of the loss function for SGD.

It would be beneficial to explore other machine learning classifiers, particularly those

that are not tree-based or are more complex, such as deep learning models. However,

we should be mindful that complex models may lead to overfitting. It would be great

to find classifiers that support lifelong learning.

88

6.4 Incremental Active- and Lifelong Learning

In general, tuning the parameters of the models can enhance their performance.

For tree-based models, we could try different estimator sizes or adjust the estimator

count added per epoch in active learning.

We could also consider using transformer as a machine learning model, like BERT.

6.4 Incremental Active- and Lifelong Learning

It is important to search and implement query strategies for incremental learning

that work with non-probabilistic classifiers. Fine-tuning these strategies can also be

helpful. More complex query strategies, such as self-implemented strategies from

related work, could be implemented and tested. However, the challenge with these

strategies is that they are often not fully explained, making it difficult to implement

them correctly, and the implementation and testing process can be time-consuming.

For lifelong learning, it is important to search for classifiers that support this tech-

nique, such as classifiers that can perform partial fitting. Additionally, tests should

be conducted to compare the efficiency of incremental active learning and lifelong

learning over a longer active learning process. This will help determine if classifiers

using lifelong learning are truly more efficient.

89

Bibliography

[AAA+22] Aljabri, Malak ; Altamimi, Hanan S. ; Albelali, Shahd A. ;
Al-Harbi, Maimunah ; Alhuraib, Haya T. ; Alotaibi, Najd K.
; Alahmadi, Amal A. ; AlHaidari, Fahd ; Mohammad, Rami
Mustafa A. ; Salah, Khaled: Detecting Malicious URLs Using
Machine Learning Techniques: Review and Research Directions. 10
(2022), S. 121395–121417. http://dx.doi.org/10.1109/ACCESS.

2022.3222307. – DOI 10.1109/ACCESS.2022.3222307

[AAAS22] Abdiyeva-Aliyeva, Gunay ; Aliyev, Jeyhun ; Sadigov, Ulfat:
Application of classification algorithms of Machine learning in cyber-
security. In: Procedia Computer Science 215 (2022), S. 909–919

[APH22] Aggarwal, Umang ; Popescu, Adrian ; Hudelot, Céline: Opti-
mizing active learning for low annotation budgets. In: arXiv preprint
arXiv:2201.07200 (2022)

[APK+11] Antoniades, Demetris ; Polakis, Iasonas ; Kontaxis, Georgios ;
Athanasopoulos, Elias ; Ioannidis, Sotiris ; Markatos, Evan-
gelos P. ; Karagiannis, Thomas: we. b: The web of short URLs.
In: Proceedings of the 20th international conference on World Wide
Web, 2011, S. 715–724

[ASBAK+23] Abdul Samad, Saleem R. ; Balasubaramanian, Sundarvadi-
vazhagan ; Al-Kaabi, Amna S. ; Sharma, Bhisham ; Chowdhury,
Subrata ; Mehbodniya, Abolfazl ; Webber, Julian L. ; Bostani,
Ali: Analysis of the Performance Impact of Fine-Tuned Machine
Learning Model for Phishing URL Detection. In: Electronics 12
(2023), Nr. 7, S. 1642

[AVW20] Albakry, Sara ; Vaniea, Kami ; Wolters, Maria K.: What is
this URL’s destination? empirical evaluation of users’ URL read-
ing. In: Proceedings of the 2020 CHI conference on human factors in
computing systems, 2020, S. 1–12

[BAK+19] Bartusiak, Roman ; Augustyniak, Lukasz ; Kajdanowicz,
Tomasz ; Kazienko, Przemys law ; Piasecki, Maciej: Word-
Net2Vec: Corpora agnostic word vectorization method. In: Neu-
rocomputing 326 (2019), S. 141–150

91

http://dx.doi.org/10.1109/ACCESS.2022.3222307
http://dx.doi.org/10.1109/ACCESS.2022.3222307

Bibliography

[BBK+22] Bodesheim, Paul ; Blunk, Jan ; Körschens, Matthias ; Brust,
Clemens-Alexander ; Käding, Christoph ; Denzler, Joachim: Pre-
trained models are not enough: active and lifelong learning is impor-
tant for long-term visual monitoring of mammals in biodiversity re-
search—individual identification and attribute prediction with image
features from deep neural networks and decoupled decision models
applied to elephants and great apes. In: Mammalian Biology 102
(2022), Nr. 3, S. 875–897

[BCCR19] Bergadano, Francesco ; Carretto, Fabio ; Cogno, Fabio ;
Ragno, Dario: Defacement detection with passive adversaries. In:
Algorithms 12 (2019), Nr. 8, S. 150

[Ber19] Berrar, Daniel: Cross-Validation. Version: 2019. http://dx.doi.
org/10.1016/B978-0-12-809633-8.20349-X. In: Encyclopedia of
Bioinformatics and Computational Biology - Volume 1. Elsevier,
2019. – DOI 10.1016/B978–0–12–809633–8.20349–X, 542–545

[Bha14] Bhat, Aruna: K-medoids clustering using partitioning around
medoids for performing face recognition. In: International Journal of
Soft Computing, Mathematics and Control 3 (2014), Nr. 3, S. 1–12

[BPM04] Batista, Gustavo E. A. P. A. ; Prati, Ronaldo C. ; Monard,
Maria C.: A study of the behavior of several methods for balancing
machine learning training data. In: SIGKDD Explor. 6 (2004), Nr.
1, 20–29. http://dx.doi.org/10.1145/1007730.1007735. – DOI
10.1145/1007730.1007735

[Cha13] Chakraborty, Nilotpal: Intrusion detection system and intrusion
prevention system: A comparative study. In: International Journal
of Computing and Business Research (IJCBR) 4 (2013), Nr. 2, S. 1–8

[CYRR21] Cyprienna, Rakotoasimbahoaka A. ; Yannick, Raharijaona Zo L. ;
Randria, Iadaloharivola ; Raft, Razafindrakoto N.: URL Classifi-
cation based on Active Learning Approach. In: 2021 3rd International
Cyber Resilience Conference (CRC) IEEE, 2021, S. 1–6

[DCLT18a] Devlin, Jacob ; Chang, Ming-Wei ; Lee, Kenton ; Toutanova,
Kristina: BERT base model (uncased). 2018. – https://

huggingface.co/bert-base-uncased [Accessed: (20.01.2024)]

[DCLT18b] Devlin, Jacob ; Chang, Ming-Wei ; Lee, Kenton ; Toutanova,
Kristina: BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In: CoRR abs/1810.04805 (2018). http:

//arxiv.org/abs/1810.04805

92

http://dx.doi.org/10.1016/B978-0-12-809633-8.20349-X
http://dx.doi.org/10.1016/B978-0-12-809633-8.20349-X
http://dx.doi.org/10.1145/1007730.1007735
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805

Bibliography

[DGG23] Dorji, Ugyen ; Gyaltshen, Tenzin ; Gupta, Deepak: Big Data
Security Analytics for Phishing URLs Detection. (2023). http://

ir.juit.ac.in:8080/jspui/jspui/handle/123456789/9829

[DLR20] DLR: HPDA system Kratos. 2020. – https://www.dlr.de/

dw/desktopdefault.aspx/tabid-13692/23853_read-55687/ [Ac-
cessed: (29.01.2024)]

[DW09] DeBarr, Dave ; Wechsler, Harry: Spam detection using clus-
tering, random forests, and active learning. In: Sixth conference on
email and anti-spam. Mountain View, California Citeseer, 2009, S.
1–6

[FRD14] Freytag, Alexander ; Rodner, Erik ; Denzler, Joachim: Select-
ing influential examples: Active learning with expected model output
changes. In: Computer Vision–ECCV 2014: 13th European Confer-
ence, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part
IV 13 Springer, 2014, S. 562–577

[Gau20] Gaur, Vishal: Information extraction from patent office actions us-
ing NLP techniques, Tampere University, Diplomarbeit, 2020

[GYR+21] Gupta, Brij B. ; Yadav, Krishna ; Razzak, Imran ; Psannis,
Konstantinos E. ; Castiglione, Arcangelo ; Chang, Xiaojun: A
novel approach for phishing URLs detection using lexical based ma-
chine learning in a real-time environment. In: Comput. Commun.
175 (2021), 47–57. http://dx.doi.org/10.1016/J.COMCOM.2021.

04.023. – DOI 10.1016/J.COMCOM.2021.04.023

[Ho95] Ho, Tin K.: Random decision forests. In: Third International Con-
ference on Document Analysis and Recognition, ICDAR 1995, August
14 - 15, 1995, Montreal, Canada. Volume I, IEEE Computer Society,
1995, 278–282

[HY23] Hu, Zeyuan ; Yuan, Ziang: A Review of Data-driven Ap-
proaches for Malicious Website Detection. In: CoRR abs/2305.09084
(2023). http://dx.doi.org/10.48550/ARXIV.2305.09084. – DOI
10.48550/ARXIV.2305.09084

[JA23] Jishnu, KS ; Arthi, B: Enhanced Phishing URL Detection Us-
ing Leveraging BERT with Additional URL Feature Extraction. In:
2023 5th International Conference on Inventive Research in Comput-
ing Applications (ICIRCA) IEEE, 2023, S. 1745–1750

[KG20] Kumar, Punit ; Gupta, Atul: Active learning query strategies for
classification, regression, and clustering: a survey. In: Journal of
Computer Science and Technology 35 (2020), S. 913–945

93

http://ir.juit.ac.in:8080/jspui/jspui/handle/123456789/9829
http://ir.juit.ac.in:8080/jspui/jspui/handle/123456789/9829
https://www.dlr.de/dw/desktopdefault.aspx/tabid-13692/23853_read-55687/
https://www.dlr.de/dw/desktopdefault.aspx/tabid-13692/23853_read-55687/
http://dx.doi.org/10.1016/J.COMCOM.2021.04.023
http://dx.doi.org/10.1016/J.COMCOM.2021.04.023
http://dx.doi.org/10.48550/ARXIV.2305.09084

Bibliography

[KRFD16] Käding, Christoph ; Rodner, Erik ; Freytag, Alexander ; Den-
zler, Joachim: Watch, Ask, Learn, and Improve: a lifelong learning
cycle for visual recognition. In: 24th European Symposium on Arti-
ficial Neural Networks, ESANN 2016, Bruges, Belgium, April 27-29,
2016, 2016, 381–386

[KRS21] Kalyan, Katikapalli S. ; Rajasekharan, Ajit ; Sangeetha,
Sivanesan: Ammus: A survey of transformer-based pretrained models
in natural language processing. In: arXiv preprint arXiv:2108.05542
(2021)

[Kum19] Kumar, Siddarth: Malicious And Benign URLs. 2019.
– https://www.kaggle.com/datasets/siddharthkumar25/

malicious-and-benign-urls [Accessed: (05.10.2023)]

[LBK21] Lakshmanarao, A ; Babu, M R. ; Krishna, MM B.: Malicious
URL Detection using NLP, Machine Learning and FLASK. In: 2021
International Conference on Innovative Computing, Intelligent Com-
munication and Smart Electrical Systems (ICSES) IEEE, 2021, S.
1–4

[Lid01] Liddy, Elizabeth D.: Natural language processing. (2001)

[Lon21] Lones, Michael A.: How to avoid machine learning pitfalls: a guide
for academic researchers. In: CoRR abs/2108.02497 (2021). https:

//arxiv.org/abs/2108.02497

[LS95] Liu, Huan ; Setiono, Rudy: Chi2: Feature selection and discretiza-
tion of numeric attributes. In: Proceedings of 7th IEEE international
conference on tools with artificial intelligence Ieee, 1995, S. 388–391

[LS22] Lenssen, Lars ; Schubert, Erich: Clustering by Direct Optimiza-
tion of the Medoid Silhouette. In: International Conference on Sim-
ilarity Search and Applications Springer, 2022, S. 190–204

[LWLZ18] Liu, Chunlin ; Wang, Lidong ; Lang, Bo ; Zhou, Yuan: Finding
effective classifier for malicious URL detection. In: Proceedings of
the 2018 2nd International Conference on Management Engineering,
Software Engineering and Service Sciences, 2018, S. 240–244

[MBA+21] Mourtaji, Youness ; Bouhorma, Mohammed ; Alghazzawi,
Daniyal ; Aldabbagh, Ghadah ; Alghamdi, Abdullah: Hybrid
rule-based solution for phishing URL detection using convolutional
neural network. In: Wireless Communications and Mobile Comput-
ing 2021 (2021), S. 1–24

94

https://www.kaggle.com/datasets/siddharthkumar25/malicious-and-benign-urls
https://www.kaggle.com/datasets/siddharthkumar25/malicious-and-benign-urls
https://arxiv.org/abs/2108.02497
https://arxiv.org/abs/2108.02497

Bibliography

[MM24] Möbius Max, Bouhlal Badr-Eddine: URL labeling with
active learning. https://git.rz.uni-jena.de/pe37jeg/

url-labeling-with-active-learning, 2024

[MRL+16a] Mamun, Mohammad Saiful I. ; Rathore, Mohammad A. ;
Lashkari, Arash H. ; Stakhanova, Natalia ; Ghorbani, Ali A.:
Detecting malicious urls using lexical analysis. In: Network and Sys-
tem Security: 10th International Conference, NSS 2016, Taipei, Tai-
wan, September 28-30, 2016, Proceedings 10 Springer, 2016, S. 467–
482

[MRL+16b] Mamun, Mohammad Saiful I. ; Rathore, Mohammad A. ;
Lashkari, Arash H. ; Stakhanova, Natalia ; Ghorbani, Ali A.:
URL dataset (ISCX-URL2016). 2016. – https://www.unb.ca/cic/

datasets/url-2016.html [Accessed: (05.10.2023)]

[NCB23] Naim, Or ; Cohen, Doron ; Ben-Gal, Irad: Malicious web-
site identification using design attribute learning. In: Int. J. Inf.
Sec. 22 (2023), Nr. 5, 1207–1217. http://dx.doi.org/10.1007/

S10207-023-00686-Y. – DOI 10.1007/S10207–023–00686–Y

[PJ09] Park, Hae-Sang ; Jun, Chi-Hyuck: A simple and fast algorithm for
K-medoids clustering. In: Expert systems with applications 36 (2009),
Nr. 2, S. 3336–3341

[PKKG10] Prakash, Pawan ; Kumar, Manish ; Kompella, Ramana R. ;
Gupta, Minaxi: Phishnet: predictive blacklisting to detect phishing
attacks. In: 2010 Proceedings IEEE INFOCOM IEEE, 2010, S. 1–5

[PLD03] Peng, Hanchuan ; Long, Fuhui ; Ding, C.: Feature selection based
on mutual information criteria of max-dependency, max-relevance,
and min-redundancy. In: IEEE Transactions on Pattern Analy-
sis and Machine Intelligence 27 (2003), 1226-1238. https://api.

semanticscholar.org/CorpusID:206764015

[PP22] Ponni, P. ; Prabha, D.: Randomized Active Learning to Identify
Phishing URL. In: Advanced Communication and Intelligent Systems
- First International Conference, ICACIS 2022, Virtual Event, Oc-
tober 20-21, 2022, Revised Selected Papers Bd. 1749, Springer, 2022
(Communications in Computer and Information Science), 533–539

[RAA+22] Roy, Sanjiban S. ; Awad, Ali I. ; Amare, Lamesgen A. ; Erkihun,
Mabrie T. ; Anas, Mohd: Multimodel phishing url detection using
lstm, bidirectional lstm, and gru models. In: Future Internet 14
(2022), Nr. 11, S. 340

95

https://git.rz.uni-jena.de/pe37jeg/url-labeling-with-active-learning
https://git.rz.uni-jena.de/pe37jeg/url-labeling-with-active-learning
https://www.unb.ca/cic/datasets/url-2016.html
https://www.unb.ca/cic/datasets/url-2016.html
http://dx.doi.org/10.1007/S10207-023-00686-Y
http://dx.doi.org/10.1007/S10207-023-00686-Y
https://api.semanticscholar.org/CorpusID:206764015
https://api.semanticscholar.org/CorpusID:206764015

Bibliography

[RPA22] Raja, A. S. ; Pradeepa, G. ; Arulkumar, N.: Mudhr: Ma-
licious URL detection using heuristic rules based approach. In:
AIP Conference Proceedings 2393 (2022), 05, Nr. 1, 020176. http:

//dx.doi.org/10.1063/5.0074077. – DOI 10.1063/5.0074077. –
ISSN 0094–243X

[RSÁGVV23] Rendón-Segador, Fernando J. ; Álvarez-Garćıa, Juan A. ;
Varela-Vaca, Angel J.: Paying Attention to cyber-attacks: A
multi-layer perceptron with self-attention mechanism. In: Comput-
ers & Security (2023), S. 103318

[RVK21] Raja, A S. ; Vinodini, R ; Kavitha, A: Lexical features based
malicious URL detection using machine learning techniques. In: Ma-
terials Today: Proceedings 47 (2021), S. 163–166

[SACAF21] Said, Naina ; Ahmad, Kashif ; Conci, Nicola ; Al-Fuqaha, Ala:
Active learning for event detection in support of disaster analysis
applications. In: Signal, Image and Video Processing (2021), S. 1–8

[Set09] Settles, Burr: Active learning literature survey. (2009)

[SGP+23] Shelar, Rohit ; Gujar, Yash ; Pawal, Niranjan ; Londhe, Pratik-
sha ; Rangdale, Sonali: NEWSIFY:-Article Summarization using
Natural Language Processing and News Authentication using TF-
IDF Vectorizer and Passive Aggressive Classifier. In: 2023 Inter-
national Conference on Sustainable Computing and Smart Systems
(ICSCSS) IEEE, 2023, S. 1654–1660

[Sid21] Siddhartha, Manu: Malicious URLs dataset. 2021. – https://

www.kaggle.com/datasets/sid321axn/malicious-urls-dataset

[Accessed: (05.10.2023)]

[SJ72] Sparck Jones, Karen: A statistical interpretation of term speci-
ficity and its application in retrieval. In: Journal of documentation
28 (1972), Nr. 1, S. 11–21

[SLH17] Sahoo, Doyen ; Liu, Chenghao ; Hoi, Steven C.: Malicious URL
detection using machine learning: A survey. In: arXiv preprint
arXiv:1701.07179 (2017)

[SMSX19] Singh, Jasdeep ; McCann, Bryan ; Socher, Richard ; Xiong,
Caiming: BERT is not an interlingua and the bias of tokenization.
In: Proceedings of the 2nd Workshop on Deep Learning Approaches
for Low-Resource NLP (DeepLo 2019), 2019, S. 47–55

96

http://dx.doi.org/10.1063/5.0074077
http://dx.doi.org/10.1063/5.0074077
https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset
https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset

Bibliography

[SR21] Schubert, Erich ; Rousseeuw, Peter J.: Fast and eager k-medoids
clustering: O (k) runtime improvement of the PAM, CLARA, and
CLARANS algorithms. In: Information Systems 101 (2021), S.
101804

[SW+89] St, Lars ; Wold, Svante u. a.: Analysis of variance (ANOVA). In:
Chemometrics and intelligent laboratory systems 6 (1989), Nr. 4, S.
259–272

[Tit09] Titsias, Michalis: Variational learning of inducing variables in
sparse Gaussian processes. In: Artificial intelligence and statistics
PMLR, 2009, S. 567–574

[Tiw20] Tiwari, Tarun: Phishing Site URLs. 2020. – https://www.

kaggle.com/datasets/taruntiwarihp/phishing-site-urls [Ac-
cessed: (05.10.2023)]

[VBB23] Vörös, Tamás ; Bergeron, Sean P. ; Berlin, Kon-
stantin: Web Content Filtering Through Knowledge Distilla-
tion of Large Language Models. (2023), 357–361. http://dx.

doi.org/10.1109/WI-IAT59888.2023.00058. – DOI 10.1109/WI–
IAT59888.2023.00058

[VV19] Vanitha, N ; Vinodhini, V: Malicious-URL detection using logistic
regression technique. In: International Journal of Engineering and
Management Research 9 (2019), Nr. 6, S. 108–113

[WWXZ22] Wu, Tiefeng ; Wang, Miao ; Xi, Yunfang ; Zhao, Zhichao: Mali-
cious url detection model based on bidirectional gated recurrent unit
and attention mechanism. In: Applied Sciences 12 (2022), Nr. 23, S.
12367

[XT15] Xu, Dongkuan ; Tian, Yingjie: A comprehensive survey of clustering
algorithms. In: Annals of Data Science 2 (2015), S. 165–193

[ZKV22] Zongo, Wend-Benedo S. ; Kabore, Boukary ; Vaghela, Ravira-
jsinh S.: Phishing URLs Detection Using Machine Learning. In:
International Conference on Advancements in Smart Computing and
Information Security Springer, 2022, S. 159–167

[ZWSL10] Zinkevich, Martin ; Weimer, Markus ; Smola, Alexander J.
; Li, Lihong: Parallelized Stochastic Gradient Descent. (2010),
2595–2603. https://proceedings.neurips.cc/paper/2010/hash/

abea47ba24142ed16b7d8fbf2c740e0d-Abstract.html

97

https://www.kaggle.com/datasets/taruntiwarihp/phishing-site-urls
https://www.kaggle.com/datasets/taruntiwarihp/phishing-site-urls
http://dx.doi.org/10.1109/WI-IAT59888.2023.00058
http://dx.doi.org/10.1109/WI-IAT59888.2023.00058
https://proceedings.neurips.cc/paper/2010/hash/abea47ba24142ed16b7d8fbf2c740e0d-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/abea47ba24142ed16b7d8fbf2c740e0d-Abstract.html

List of Figures

2.1 Uniform Resource Locator Structure [AVW20] 17
2.2 Phishing Attack [MBA+21] . 19
2.3 IDS and IPS in network security, reworked from [Cha13] 20
2.4 Active Learning Cycle [Set09] . 28
2.5 Sampling Strategies [KG20] . 30
2.6 Working mechanism of the different sampling strategies used for un-

certainty sampling [SACAF21] . 31

3.1 The whole pipeline . 40
3.2 Feature Extraction Pipeline . 41
3.3 Incremental Active Learning Pipeline 47

4.1 Pool-based Active learning with Random Forest, the two-class dataset
and 50 epochs. Sampling size comparison: 95 vs. 956 vs. 9561 59

4.2 Pool-based Active learning with Random Forest, a sampling size of
956 and 50 epochs. Comparison between the use of two-class- and
preprocessed two-class datasets . 61

4.3 Pool-based Active learning with Random Forest, the two-class dataset
and 50 epochs. Full-trained RF models vs. RF models trained with
fewer data. Sampling size of 956. 62

4.4 Pool-based Active learning with Random Forest, the two-class dataset
and 50 epochs. Sampling size comparison: 95 vs. 956 vs. 9561 65

4.5 Pool-based Active learning with Random Forest, the four-class
dataset and 50 epochs. Sampling size comparison: 45 vs 455 vs 4558 . 67

4.6 Pool-based Active learning with Random Forest, the five-class dataset
and 50 epochs. Sampling size comparison: 8 vs 81 vs 810 68

4.7 Pool-based Active learning with RF and SGD, the two-class dataset
and 50 epochs. RF and SGD comparison with a sampling size of 956 69

4.8 Stream-based Active learning with RF and SGD, the two-class
dataset and 50 epochs. RF (no lifelong learning) and SGD comparison 70

4.9 Stream-based Active learning with RF, the two-class, four-class, and
five-class dataset and 50 epochs. 71

4.10 Active learning with Query-by-Committee, the two-class, four-class,
and five-class dataset and 50 epochs. Sampling size comparison: 95
vs. 956 vs. 9561 . 73

99

List of Figures

4.11 Cluster model training and pool-based Active learning with RF, the
two-class, four-class, and five-class dataset. A sampling size of 0.1%
of the unlabeled pool and 50 epochs used. 75

4.12 RF with the two-class dataset, a sampling size of 956 and 50 epochs.
“Sampling” approaches compared. 76

100

List of Tables

3.1 Select best feature methods . 42
3.2 Feature description and type for feature ex1 43
3.3 Feature description and type for feature ex2 45

4.1 Initial datasets . 52
4.2 Refined datasets . 54
4.3 Accuracy results of pre-trained RF model after feature extraction . . 55
4.4 Accuracy results of pre-trained SGD model after feature extraction . 56
4.5 Accuracy measurements for Figure 4.1. Baseline with all sampling

sizes compared. 60
4.6 Accuracy measurements for Figure 4.2. Baseline and best method for

both plots are compared. 61
4.7 Accuracy results of pre-trained RF model after feature extraction . . 64
4.8 Accuracy results of pre-trained SGD model after feature extraction . 64
4.9 Accuracy measurements for Figure 4.4. Baseline and the best method

with all sampling sizes are compared. 66
4.10 Accuracy measurements for figure Figure 4.5. Baseline and best

method compared with sampling sizes 45, 455 and 4558. 67
4.11 Accuracy measurements for Figure 4.6. Baseline and best method

compared with all sampling sizes. 69
4.12 Accuracy measurements for Figure 4.7. The baseline of RF and SGD

compared with a sampling size of 95 70
4.13 Accuracy measurements for Figure 4.8. The baseline of RF and SGD

compared with a sampling size of 95 71
4.14 Accuracy measurements for Figure 4.9. Baseline and best method

compared. 72
4.15 Accuracy measurements for Figure 4.10. Best method with sampling

size 96, 956, and 9561 . 73
4.16 Accuracy measurements for Figure 4.11. Comparison of baseline and

best method with a sampling size of 0.1% 75
4.17 Accuracy measurements for Figure 4.12. Comparison of RF with

sampling size 956 and the four approaches of “Sampling” 76
4.18 Highest accuracy measurements for pool-based sampling 78

101

Erklärung

Ich versichere, dass ich die vorliegende Arbeit (bei Gruppenarbeiten die entsprechend

gekennzeichneten Anteile) selbstständig verfasst und keine anderen als die angegebe-

nen Hilfsmittel und Quellen benutzt habe. Zitate und gedankliche Übernahmen aus

fremden Quellen (einschließlich elektronischer Quellen) habe ich kenntlich gemacht.

Die eingereichte Arbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt und

wurde auch nicht veröffentlicht. Mir ist bekannt, dass eine unwahre Erklärung

rechtliche Folgen haben und insbesondere dazu führen kann, dass die Arbeit als

nicht bestanden bewertet wird.

Seitens des Verfassers/der Verfasserin bestehen keine Einwände, die vorliegende

Masterarbeit für die öffentliche Benutzung zur Verfügung zu stellen.

Jena, den 31.01.2024 Max Möbius

	Introduction
	Motivation
	Active Learning on unlabeled URLs
	Related work
	Overview

	Background
	Uniform Resource Locators
	URL Attack Techniques
	Defacement URL Attacks
	Malware URL Attacks
	Phishing URL Attacks
	Spam URL Attacks

	Malicious URL Detection
	Blacklisting and Heuristic/Rule-based Approach
	Machine Learning Approaches

	Classical Feature Extraction
	URL Feature Categories
	Extraction Technique

	Natural Language Feature Extraction
	Natural Language Processing (NLP)
	Word Vectorization / Word Embedding
	Transformer

	Evaluation
	Dataset Splitting
	Cross-Validation

	Active Learning
	Uncertainty Sampling
	Query-by-Committee
	Incremental Active Learning
	Lifelong Learning

	Clustering
	K-Medoids Clustering

	Methodology
	Ideas
	Implementation
	Preprocess datasets
	Feature Extraction
	Machine Learning
	Incremental Active Learning
	Lifelong Learning

	Experimental Results and Evaluation
	Settings
	Datasets
	Dataset Preprocessing
	First Active Learning Experiment
	Additional Information
	Pool-based Sampling

	Second Active Learning Experiment
	Additional Information
	Pool-based Sampling
	Stream-based Sampling
	Query-by-Committee
	Clustering

	Discussion

	Conclusions
	Future work
	Data Preprocessing
	Feature Extraction
	Machine Learning
	Incremental Active- and Lifelong Learning

	Bibliography
	List of Figures
	List of Tables

