Tenhumberg, Johannes and Mielke, Arman and Bäuml, Berthold (2024) Efficient Learning of Fast Inverse Kinematics with Collision Avoidance. In: 22nd IEEE-RAS International Conference on Humanoid Robots, Humanoids 2023, pp. 1-8. IEEE. 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids), 2023-12-12 - 2023-12-14, Austin, TX, USA. doi: 10.1109/Humanoids57100.2023.10375143. ISBN 979-835030327-8. ISSN 2164-0572.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/document/10375143
Abstract
Fast inverse kinematics (IK) is a central component in robotic motion planning. For complex robots, IK methods are often based on root search and nonlinear optimization algorithms. These algorithms can be massively sped up using a neural network to predict a good initial guess, which can then be refined in a few numerical iterations. Besides previous work on learning-based IK, we present a learning approach for the fundamentally more complex problem of IK with collision avoidance. We do this in diverse and previously unseen environments. From a detailed analysis of the IK learning problem, we derive a network and unsupervised learning architecture that removes the need for a sample data generation step. Using the trained network's prediction as an initial guess for a two-stage Jacobian-based solver allows for fast and accurate computation of the collision-free IK. For the humanoid robot, Agile Justin (19 DoF), the collision-free IK is solved in less than 10 ms (on a single CPU core) and with an accuracy of 1×10-4m and 1×10-3 rad based on a high-resolution world model generated from the robot's integrated 3D sensor. Our method massively outperforms a random multi-start baseline in a benchmark with the 19 DoF humanoid and challenging 3D environments. It requires ten times less training time than a supervised training method while achieving comparable results.
Item URL in elib: | https://elib.dlr.de/202625/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Efficient Learning of Fast Inverse Kinematics with Collision Avoidance | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 1 January 2024 | ||||||||||||||||
Journal or Publication Title: | 22nd IEEE-RAS International Conference on Humanoid Robots, Humanoids 2023 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/Humanoids57100.2023.10375143 | ||||||||||||||||
Page Range: | pp. 1-8 | ||||||||||||||||
Publisher: | IEEE | ||||||||||||||||
ISSN: | 2164-0572 | ||||||||||||||||
ISBN: | 979-835030327-8 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | inverse kinematics | ||||||||||||||||
Event Title: | 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids) | ||||||||||||||||
Event Location: | Austin, TX, USA | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 12 December 2023 | ||||||||||||||||
Event End Date: | 14 December 2023 | ||||||||||||||||
Organizer: | IEEE-RAS | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||
DLR - Research theme (Project): | R - Autonomy & Dexterity [RO] | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) | ||||||||||||||||
Deposited By: | Strobl, Dr. Klaus H. | ||||||||||||||||
Deposited On: | 05 Feb 2024 08:48 | ||||||||||||||||
Last Modified: | 24 Apr 2024 21:02 |
Repository Staff Only: item control page