Bleh, Alexander und Geiser, Georg (2024) Finding Transition Models using Dimensional Analysis Gene Expression Programming. In: AIAA SciTech 2024 Forum. AIAA SciTech 2024, 2024-01-08 - 2024-01-12, Orlando, USA. doi: 10.2514/6.2024-1573. ISBN 978-162410711-5.
PDF
893kB |
Kurzfassung
Data-driven turbulence modeling has become an emerging field, aiming to overcome the weaknesses of classical Reynolds Averaged Navier-Stokes (RANS) models. One branch is Gene Expression Programming (GEP), which tries to find symbolic expressions for unknown functional dependencies. As an evolutionary algorithm it typically relies on many function evaluations. To reduce the computational cost, prior knowledge should be included where possible. When modeling functional dependencies in a physical context, the classical GEP is unaware of the physical dimensions of the involved quantities. Nevertheless, the validity of an expression in terms of its dimensions is a valuable hint towards its suitability and may improve the algorithms’ performance. Therefore, in this work, we propose a new approach to consider physical dimensions within GEP. The new algorithm is evaluated and compared against existing approaches and applied on well-described turbomachinery test cases at transitional flow conditions.
elib-URL des Eintrags: | https://elib.dlr.de/202616/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Finding Transition Models using Dimensional Analysis Gene Expression Programming | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 10 Januar 2024 | ||||||||||||
Erschienen in: | AIAA SciTech 2024 Forum | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.2514/6.2024-1573 | ||||||||||||
ISBN: | 978-162410711-5 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Gene Expression Programming, Turbulence modelling, Data-driven | ||||||||||||
Veranstaltungstitel: | AIAA SciTech 2024 | ||||||||||||
Veranstaltungsort: | Orlando, USA | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 8 Januar 2024 | ||||||||||||
Veranstaltungsende: | 12 Januar 2024 | ||||||||||||
Veranstalter : | AIAA | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||
HGF - Programmthema: | Umweltschonender Antrieb | ||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||
DLR - Forschungsgebiet: | L CP - Umweltschonender Antrieb | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Triebwerk | ||||||||||||
Standort: | Köln-Porz | ||||||||||||
Institute & Einrichtungen: | Institut für Antriebstechnik > Numerische Methoden | ||||||||||||
Hinterlegt von: | Bleh, Alexander | ||||||||||||
Hinterlegt am: | 05 Feb 2024 08:49 | ||||||||||||
Letzte Änderung: | 05 Jul 2024 11:07 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags