
Finding Transition Models using
Dimensional Analysis Gene Expression Programming

A. Bleh∗ and G. Geiser†

German Aerospace Center (DLR), Cologne, Germany

Data-driven turbulence modeling has become an emerging field, aiming to overcome the
weaknesses of classical Reynolds Averaged Navier-Stokes (RANS) models. One branch is
Gene Expression Programming (GEP), which tries to find symbolic expressions for unknown
functional dependencies. As an evolutionary algorithm it typically relies on many function
evaluations. To reduce the computational cost, prior knowledge should be included where
possible. When modeling functional dependencies in a physical context, the classical GEP
is unaware of the physical dimensions of the involved quantities. Nevertheless, the validity
of an expression in terms of its dimensions is a valuable hint towards its suitability and may
improve the algorithms’ performance. Therefore, in this work, we propose a new approach to
consider physical dimensions within GEP. The new algorithm is evaluated and compared against
existing approaches and applied on well-described turbomachinery test cases at transitional
flow conditions.

I. Nomenclature

𝐶𝑃,𝑘 , 𝐶𝜎 = Constants of the k-equation in the Wilcox 𝑘 − 𝜔 model
𝐷 = Destruction term of the 𝑘-equation
𝑔 = Gravitational acceleration
𝛾 = Transition factor
𝑘 = Turbulent kinetic energy
`𝑚 = Molecular viscosity
`𝑡 = Turbulent viscosity
∇𝑢 = Divergence of the velocity
𝑛pop = Number of individuals in a population
𝜔 = Turbulent dissipation rate
𝑝correct = Probability that a generation contains the correct expression
𝑃𝑘 = Production term of the 𝑘-equation
𝑃𝐺𝐸𝑃 = Production term of the 𝛾-equation to be modeled by GEP
‖Ω‖ = Rotation rate tensor norm
‖𝑆‖ = Strain rate tensor norm
𝜌 = Density
𝜎𝑘 = Diffusion coefficient
𝜏𝑤 = Wall friction
𝑤𝑑 = Distance to the closest wall

II. Introduction

Despite the increasing availability of computational power and consequently the access to scale-resolving flow
simulation results, Reynolds Averaged Navier Stokes (RANS) turbulence modeling is still an essential backbone

in industrial design processes. Therefore, the ability of these turbulence models to accurately model the flow of, e.g.,
turbomachinery designs is crucial for improving the efficiency of modern jet engines and in consequence the reduction
of their emissions. The derivation of the RANS equations yields correlation terms, for which a closed-form expression

∗Research scientist, German Aerospace Center, Institute of Propulsion Technology, Linder Höhe, 51147 Cologne, Germany
†Group leader, German Aerospace Center, Institute of Propulsion Technology, Linder Höhe, 51147 Cologne, Germany

1

could not yet be found. Consequently, solving these equations requires turbulence models, which inherently comprise
empirical assumptions. Popular models are the group of linear eddy viscosity models. While being computationally
efficient, these models often fail to accurately predict the flow. For example, this can be the case in the presence of
separation or strong secondary flows. Data gained by experiments or scale-resolving simulations can provide information
about weaknesses of such models.

One option to exploit data by means of machine learning is the training of neural networks either in a direct fashion,
as demonstrated, e.g., in [1] or by solving the inverse problem as shown in [2]. A drawback of neural networks is the
difficulty to analyze and interpret their behavior. Therefore, evolutionary algorithms, which aim at finding symbolic
expressions, have emerged over the recent years in the area of data driven turbulence modelling [3, 4].

The CFD-driven approach as described in [4] has grown in popularity over the recent years, as it circumvents the need
for high resolution flow data and enables the use of experimental results as potential reference data. In analogy to the
gradient based field inversion method [5], CFD driven evolutionary algorithms solve the inverse problem. Nevertheless,
the need for CFD simulations for evaluating the fitness of each individual makes this approach computationally expensive.
Therefore, approaches which aim at improving the convergence of evolutionary optimization algorithms are particularly
interesting for the CFD-driven method. In this context Ma et al. [6] demonstrated the utilization of knowledge about the
physical dimensions of the problem quantities within the evolutionary process.

In this publication, we build on this work and propose a new algorithm that is based on expanding a given expression
with respect to its physical dimensions. The new method is described in section IV. To evaluate its potential, we apply it
on a set of a priori known test expressions. Subsequently, we compare its performance against the approach described
by Ma et al. [6] as well as the classical procedure which is based on defining nondimensional input features.

Finally, we validate the new approach by applying it to reference data of the turbine profiles T106C and T107A in
order to obtain PDE based transition models.

III. Genetic Programming

(a) Expression tree (Phenotype)
(b) Gene containing the prefix expression (Genotype)

Fig. 1 Relation between the expression tree and its genetic representation.

Genetic Programming (GP) is an optimization technique which mimics natural evolution based on the “survival of
the fittest” [7] principle. A randomly generated initial population of individuals is evaluated and single individuals are
discarded based on their performance solving a given reference problem. Better performing individuals are recombined
in a random fashion to form the succeeding generation.

In order to recombine two different manifestations (phenotypes) of individuals into a new child individual, each
possible individual must be transferable into a unique linear numerical representation. This representation is denoted as
the genotype of the individual.

A. Gene Expression Programming
Regarding mathematical expression trees, a purely random sequence of operators, variables, and constants would

generally yield invalid expressions. In order to allow only valid expressions, Gene Expression Programming (GEP) puts
additional constraints onto the genotype representation of an individual [8]. This is achieved by writing expressions in a
linear prefix notation and providing a sufficiently large reservoir of terminal quantities in a tail part of the gene. Figure 1

2

demonstrates the relation between the expression tree (phenotype) and the corresponding gene (genotype). GEP is able
to find global optima in discrete sampling spaces, making it a suitable tool to find symbolic expressions of unknown
functional dependencies.

Additional arrays may be placed behind the genes tail section to encode additional information. In order to enrich
the discrete evolutionary optimization algorithms with continuous random numerical constants (RNC), the RNC-GEP
algorithm [8] utilizes such an additional array behind the genes tail. In this work, we also make use of an additional
integer array, as described in more detail in section IV.C.

B. CFD-driven approach

Population

Evolutionary
Algorithm GenotypeGenotypeGenotypeGenotype

Individuals
(Genotype)

CFD Solver

Expression
(Phenotype)

Generates

Compile
into solver

Perform
Simulations for
each individual

Compute fitness
of each individual

Fig. 2 Schematic visualization of the CFD-driven GEP algorithm.

To evaluate the fitness of each individual, we use the CFD-driven approach, as described in [4] and depicted in
Fig. 2. This requires the execution of one or more RANS CFD simulations for each individual. After each simulation, a
norm for the deviation between RANS and reference data is computed and added to the fitness. For better performance,
the individual expressions are compiled at runtime using Just-In-Time (JIT) compilation.

Nevertheless, using this approach, each individual requires the execution of one or more CFD simulations. Therefore,
it is of particular interest, to save the execution of CFD evaluations whenever possible or to reduce the total number of
required evaluations until convergence. In this work we focus on two principles, to reduce the total number of required
CFD evaluations:

• Omitting evaluations: This can be done, e.g., by skipping individuals that have already been evaluated. In
gene expression programming, it is usually the case, that multiple different chromosomes yield an equivalent
mathematical expression (e.g., 𝑥 vs. 𝑥 + 𝑦/𝑦 − 1). In this work, we use the python library Sympy [9] to identify
equivalent expressions. Furthermore, individuals might be discarded from CFD evaluation, because their respective
phenotype does not fulfill certain constraints like the occurrence of NaN or inf (e.g., 𝑥/(1 − 1)) or dimensional
constraints as described in more detail in section IV.

• Likelihood design: Designing the optimization problem, we usually aim towards a high probability that the best
or at least a good candidate is found at an early iteration. This is already inherently done, e.g., by considering
only input quantities that may be relevant for the problem at hand, or by reducing the set of possible operators or
functions according to a priori assumptions. Based on this, the probability of a good candidate to occur shall
increase with each iteration, due to selective recombination of candidates with high fitness values. Nevertheless,
in the first iteration, the generation of individuals is fully random. Hence, the probability that a certain expression
occurs in the first generation is equivalent to the probability that it occurs in a randomly generated sample.
Consequently, if we have knowledge or a reasonable guess about the structure of the correct or best fitting
expressions, we might want to decrease the likelihood of expressions which contradict these assumptions. In
contrast, if we do not have any knowledge about a subset of possible expressions, we mostly want to establish
equal likelihood between all possible members of this subset.

3

With respect to these two mechanisms we compare different strategies to enable knowledge about physical dimensions
in order to improve the output of GEP investigations.

IV. Accounting for physical dimensions
Floating point numbers in a computer are completely independent of the dimension or the physical quantity they are

representing. They do not contain any information except their numerical value. In most applications dimensional
significance is only formed virtually by the context in which a user or programmer decides to use these numbers.

Fig. 3 Vector representation of physical units of input and output quantities for the example of the total pressure
formula.

If physical dimensions shall be used or interpreted by an algorithm, they require an appropriate representation.
Ma et al. [6] are using a prime number factorization in order to derive a boolean criterion whether a given expression is
valid in terms of its physical dimensions or not.

For this work we use a vector based approach depicted in Fig. 3, which stores the physical dimensions as a fixed size
integer vector of base-units. These base units may comprise SI-units, but do not have to. Each position in the vector
represents one base-unit. Positive integers represent physical base-units in the numerator whereas negative integers
represent base-units in the denominator. To determine the physical dimension of a product (quotient) of two inputs, we
simply have to add (subtract) their respective unit-vectors. Regarding summation or subtraction in a physically valid
expression, the sum or difference shall have the same physical dimension as its respective summands or minuend and
subtrahend. Nevertheless, if they have different physical dimensions, the expression is considered physically invalid.
Certain functions such as logarithm or trigonometric functions can yield invalid dimensions as well. In the context of
this work, only whole numbers are allowed for the dimensions. This implies that, e.g., the logarithm of a term with
nonzero unit-vector is considered to be invalid. Depending on the context, certain functions might also expect certain
dimensions. For instance, the trigonometric functions might either expect nondimensional radians or explicitly degrees.
We propose the following set of rules as suitable for the cases investigated in this paper:

1) Multiplication Add units: 𝑐 = 𝑎 · 𝑏 ←→ [𝑐] = [𝑎] + [𝑏]
2) Division Subtract units: 𝑐 = 𝑎/𝑏 ←→ [𝑐] = [𝑎] − [𝑏]
3) Addition/ Subtraction Check equality: 𝑐 = 𝑎 ± 𝑏 ←→ if [𝑎] ≠ [𝑏] then invalid

In the following, we investigate three approaches to consider physical dimensions in GEP.

A. Manual approach
The standard method to account for physical dimensions in almost all publication related to data-driven modelling

of physical phenomena, is to create a normalized context, which is independent of any physical dimension. This is
typically achieved by providing nondimensional products of physical input features as well as a dimensionalization
factor for the output quantity in case it has a physical dimension. In this work, we further denote this approach by the
term manual nondimensionalization. Manually designing a set of nondimensional input features effectively reduces the
likelihood of expressions with nonmatching physical dimensions to zero. On the other hand, the choice of input features
may have an undesired influence on the probability of expressions with valid physical dimensions.

This effect is shown in Fig. 4. Consider the nondimensional input feature Π1 = 𝑏/𝑎, with 𝑎 and 𝑏 being dimensional
quantities of the same dimension. The symbol 𝑇 denotes an arbitrary terminal. In this example all tokens would
terminate the expressions if chosen for 𝑇 . The likelihood of the expression 𝑏/𝑎 = Π1 (Genome/prefix notation |Π1|𝑇 |)
to appear in a random sample is higher than the occurrence of the expression 𝑏/𝑎 = 1/Π1 (Genome/prefix notation
|/|1|Π1|𝑇 |). This is due to the more complex genome representation of the latter expression. Therefore, unfavorably

4

Fig. 4 Demonstration how the selection of nondimensional input features causes unbalanced likelihoods for
expression of equal complexity.

selected nondimensional input features may unbalance the random expression probabilities in an undesired way.
Consequently, we would like to have an algorithm, which yields balanced likelihoods, yet without reducing the

probability of valid expressions in terms of physical dimensions.

B. Discarding approach
As mentioned before, in case there are no assumptions or prior knowledge about an adequate choice of nondimensional

products as input features, it would be desirable to not harm a balanced likelihood between two possible valid expressions.
A method which allows the direct use of the dimensional input units, hence preserving a balanced likelihood, is

proposed by Ma et al. [6], who introduce a dimensional homogeneity constraint. Using the raw input quantities, their
approach essentially corresponds to the principle shown in Fig. 4 on the right. Since the generation of invalid expressions
in terms of physical dimensions is allowed, the probability of all valid expressions is reduced in return. The authors
counteract this lower likelihood per individual by increasing the population size. To account for the increased problem
complexity, they are using a prime number factorization to determine a boolean criterion whether a given expression
has matching physical dimensions or not. In case of mismatching dimensions, the expression is removed from the
competition by assigning a fixed large fitness value, hence saving the need for an expensive CFD evaluation. This way,
invalid individuals can be quickly discarded, which allows to save considerable computational resources by reducing the
number of required CFD simulations. Thus, this method follows the principle of omitting evaluations described in
section III.B.

The fitness of discarded individuals needs to be set to a very high fixed value. Consequently, there is no competition
between invalid members, although they are still part of the selection process. This property may harm convergence,
since randomly generated sample expressions using dimensional quantities will yield invalid expressions with a high
probability, ultimately counteracting the evolutionary development. In section V we will investigate whether the
performance gain due to discarded individuals might compensate the effect of reduced competition.

C. Dynamic Dimension Normalization
The discarding approach by Ma et al. [6] described in section IV.B heavily relies on the principle of discarding

individuals.
We propose a new method, which does not require discarding individuals based on their dimensional homogeneity,

yet which also uses the raw dimensional input quantities directly. The method is intended to combine the advantages of
the manual approach and the discarding approach. First, it shall preserve a balanced likelihood as is the case for the
discarding approach. Second, the new approach is expected to yield better convergence, since competition is preserved
due to all individuals being evaluated.

This is achieved by rendering the expression from the genome using a rule, which always produces matching physical
dimensions. We do this by fixing or extending the raw expression we get from the original GEP algorithm. This is
achieved by adding an appropriate normalization factor for each subtree of a given expression, where dimensions do not
match. Therefore, we further denote the new approach as Dynamic Dimension Normalization (DDN).

In general, there is an infinite number of possible ways to fix an expression in order to achieve matching dimensions.
Since evolutionary algorithms produce random expressions, there is no ultimate way to do this. Nevertheless, we seek

5

Fig. 5 Modification of expressions in the DDN approach.

for an algorithm using the following premises:
1) Deterministic While the mutation and crossing of individuals is stochastic, the process to convert the genotype

into the phenotype shall be deterministic.
2) Simplicity The algorithm shall fix the expression with the least or close to the least amount of added terminals or

operators.
First, the individual is converted from the chromosome (genotype) into an expression (phenotype), as described in

the original paper on GEP by Ferreira et al. [8]. Next, the expression is parsed into a tree as shown in Fig. 5. Afterward,
the unit-vectors of the input features are propagated through the expression tree, using the rules defined in section IV. It
may (and generally will) happen that the dimension of the two summands of an addition do not match. If this is the case,
we assume that the second summand (or the subtrahend) yields the correct dimension. This implies that in order to fix
the expression, the first summand (or minuend) must be normalized using the given set of input quantities. Figure 5
demonstrates this procedure. An additional multiplication is introduced in the affected branch of the expression tree and
the required quantity to create matching dimensions is multiplied to the left summand (or minuend).

Fig. 6 Solution of the diophantine equation system based on the example shown in Fig. 5.

The possible solutions to normalize the first summand in order to match the second summand can be determined by
solving the diophantine equations [10]. All dimension vectors of the normalization input features are written into an
integer left hand side matrix 𝐴. The difference between the dimensions of the first and second summand yield the right
hand side integer vector 𝑏. Figure 6 demonstrates the solution of the diophantine equation system based on the example
shown in Fig. 5. For this publication, we solve the resulting equation system using the publicly available python library
Diophantine [11]. When solving the diophantine equation system there are three cases to be distinguished:

6

1) Exactly one solution (generally rare) In this case we can simply take the given solution without any further
care.

2) No solution (problem in setup) This case usually hints at a problem in the setup of the input features, i.e., the
dimension of one of the inputs cannot be expressed by any product of the normalization features. Nevertheless,
this might also hint at the existence of a missing physical constant.

3) Multiple solutions (common case) Diophantine equation systems usually feature an infinite number of nontrivial
solutions. The LLL algorithm described in [10] aims at finding small integer solutions. This means that e.g. the
solution [1, 1] would be discarded, if the solution [1, 0] exists. For the scope of this work, this restriction is
tolerated. Nevertheless, in order to make the normalization more flexible, allowing solutions up to a certain
norm might be beneficial. Yet, even if we restrict solutions to the smallest norm, there is generally a finite
set of different smallest solutions. This is, e.g., the case if multiple different normalization features with the
same physical dimensions are provided. Since we do not know which solution is most suitable to normalize the
given term, the choice is encoded within the genome. Therefore, we add an array of integers to the genome,
which shall represent the index of the solution to be selected in case a term needs to be normalized. In the worst
case, an equation system has to be solved for all operators in an expression as well as for nonmatching output
dimension. Hence, the index array has to provide at least as many numbers as there are entries in the gene’s
head, plus one additional entry for the output dimension. Thereby, each position in the normalization solution
index array corresponds to the respective position in the genes head, except for the last which is used to fit a
potential mismatch of the output unit. We do not know a priori the number of possible solutions, yet we want an
approximately equal probability for each solution. This is achieved by using a sufficiently large range of possible
integer values and taking the modulus with respect to the number of solutions to compute the actual solution
index. For the mutation and crossover operations to modify the normalization index array, we use the same
operators that already exist for the additional index array required by the RNC-GEP algorithm [8].

V. Compare performance of dimensional aware GEP approaches
In section IV we described different methods based on the consideration of physical dimensions. In order to evaluate

the performance of the different approaches, they are applied on sample expressions multiple times in order to achieve a
certain statistical significance. Afterward, the averaged convergence history is being compared. All investigations are
conducted using the python library geppy [12], which builds on the evolutionary algorithm framework DEAP [13].

Since the approach of [6] heavily relies on discarding members, hence saving computational cost of related CFD
simulations, it would be disproportionately disadvantageous, if we only consider the convergence over the raw number
of individuals. Therefore, we normalize the convergence history with the number of individuals that actually would
have to be evaluated in a CFD-driven approach. Besides individuals which are invalid with respect to their physical
dimensions, expressions which have already been evaluated once are discarded as well. That is, if a different individual
yields an equivalent expression, it will be counted as already evaluated. This is important since different approaches
might yield a different probability of producing equivalent expressions.

Table 1 Sample expression for comparison of the dimensional aware approaches.

Fitness Expression Manual setup (easy) Manual setup (hard)

1. Bernoulli 𝑝𝑡 = 𝑝𝑠 + 𝜌𝑢2/2 + 𝜌𝑔ℎ 𝑝𝑠 · 𝑓
(
𝜌𝑢2

𝑝𝑠
,
𝜌𝑔ℎ

𝑝𝑠

)
𝑝𝑠 · 𝑓

(
𝑝𝑠
𝜌𝑢2 ,

𝑝𝑠
𝜌𝑔ℎ

,
𝜌𝑢2

𝜌𝑔ℎ

)
2. Production k 𝑃𝑘 = `‖𝑆‖2 + 2

3 𝜌𝑘∇𝑢 `‖𝑆‖2 ·
(
𝜌𝑘∇𝑢
` ‖𝑆 ‖2

)
`(∇𝑢)2 · 𝑓

(
∇𝑢
‖𝑆 ‖ ,

𝜌𝑘

` ‖𝑆 ‖

)
3. Fictional (`𝑡 − `𝑚)/(‖Ω‖ + ‖𝑆‖) `𝑡

‖Ω‖ · 𝑓
(
`𝑚
`𝑡
,
‖𝑆 ‖
‖Ω‖

)
`𝑡
‖Ω‖ · 𝑓

(
`𝑚
`𝑡
,
‖Ω‖
‖𝑆 ‖

)

The sample expressions that are used to evaluate the approaches are listed in Table 1. Expression 1 is the Bernoulli
equation for total pressure and expression 2 is the production term of the turbulent kinetic energy in the Wilcox 𝑘 − 𝜔

7

Evaluations

A
v

e
ra

g
e

 f
it

n
e

s
s

 o
f

b
e

s
t

P
ro

b
a

b
il
it

y
 o

f
c

o
rr

e
c

t
in

d
iv

id
u

a
l,
 %

0 1000 2000 3000 4000

10-2

10
-1

10
0

0

20

40

60

80

100

Manual (hard)
Manual (easy)
DDN
Discard

(a) Bernoulli’s equation: 𝑝𝑡 = 𝑝𝑠 + 𝜌𝑢2/2 + 𝜌𝑔ℎ
Evaluations

A
v

e
ra

g
e

 f
it

n
e

s
s

 o
f

b
e

s
t

P
ro

b
a

b
il
it

y
 o

f
c

o
rr

e
c

t
in

d
iv

id
u

a
l,
 %

0 1000 2000 3000 4000 5000

10-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0

20

40

60

80

100

Manual (hard)
Manual (easy)
DDN
Discard

(b) 𝑘-production: 𝑃𝑘 = `‖𝑆‖2 + 2
3 𝜌𝑘∇𝑢

Evaluations

A
v

e
ra

g
e

 f
it

n
e

s
s

 o
f

b
e

s
t

P
ro

b
a

b
il
it

y
 o

f
c

o
rr

e
c

t
in

d
iv

id
u

a
l,
 %

0 1000 2000 3000 4000 5000 6000

10-2

10-1

0

20

40

60

80

100

Manual (hard)
Manual (easy)
DDN
Discard

(c) Fictional expression: (`𝑡 − `𝑚)/(‖Ω‖ + ‖𝑆‖)
Generation

A
v

e
ra

g
e

 e
v

a
lu

a
ti

o
n

s
 p

e
r

g
e

n
e

ra
ti

o
n

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 o

f
e

v
a

lu
a

ti
o

n
 p

e
r

g
e

n
.

20 40 60 80 100
0

20

40

60

80

100

4

6

8

10

12

14

16

Manual (hard)
Manual (easy)
DDN
Discard

(d) Evaluated cases in each generation for Bernoulli

Fig. 7 Averaged convergence of 100 repeated GEP evaluations for each test case.

model [14]. Hence, these expressions are actual formulas taken from the CFD context and the result of a physically
motivated derivation. Expression 3 is fictional, yet might be the result of an empirical regression. It features the sum
and difference of different input quantities with equal physical dimensions. It is expected that this structure poses a
challenge particularly for the manual nondimensionalization.

A. Comparison with the manual approach
When using nondimensional products to account for physical dimensions, the convergence of the GEP optimization

may depend on the design and choice of input features. Usually, the optimal choice is not known a priori. Hence, we
evaluate two different sets of nondimensional input features for each expression. The first set is chosen in an optimal
way, hence denoted by the term easy. The attribute optimal in this case means that the expression required to yield
the original formula is found early with a high probability during the GEP optimization. This is roughly the case
when the expression is very short. The number of equivalent expressions due to commutation and distribution laws is
relevant as well, nevertheless we neglect this effect. The second set is denoted by the term hard, since it requires a more
complex expression to yield the original formula. E.g., the first set for Bernoulli’s equation would require the expression
1 + 2/3Π1 (prefix: +1·Π1 / 2 3), whereas the second set would at least require the expression Π−1

1
(
Π−1

1 + 2/3Π2
)

(prefix:
· / 1Π1+/1 Π1· / 2 3 Π2). When comparing the prefix expressions, the different complexity of the two expressions
becomes even clearer.

B. Performance of the different algorithms
Figure 7(a-c) shows the averaged results of 100 GEP optimizations for each test expression. The left y-axes represent

the averaged fitness of the best individual in each generation. The right y-axes represent the probability 𝑝correct that the
best individual in a given generation of size 𝑛pop is equivalent to the correct expression:

8

𝑝correct (𝑔) =
𝑛correct (𝑔)

𝑛pop

The x-axes denote the average number of virtual CFD evaluations 𝑛CFD that would have to be conducted in case of a
CFD-driven investigation:

𝑛eval (𝑔) =
1

𝑛GEP

𝑔∑︁
𝑖=0

𝑛GEP∑︁
𝑗=0

𝑛CFD

The symbol 𝑛GEP denotes the total number of repeated gene expression investigations that have been performed. For
each case we conducted 100 GEP investigation over 100 generations. Each generation comprised 100 individuals except
for the discarding approach. Since most of the individuals yield invalid dimensions and thus are discarded, this method
requires a much larger population to be effective. We scaled the number of individuals to 20 000 for each case. Different
configurations might yield different results for either case and method. Nevertheless, a more thorough parameter study
is beyond the scope of this work. To provide insight in the different discarding characteristics of each method, Fig. 7d
shows the average number of virtual CFD evaluations in each generation. The discarding approach requires a certain
start-up phase until a sufficiently large stock of valid expressions is available. Nevertheless, since invalid expressions are
mostly negligible in terms of performance, this does not necessarily harm the overall convergence.

As expected the manual approach converges faster for the easy configuration compared to the harder configuration
for all cases. Consequently, the average fitness of the best individual is lower as well. The DDN approach is converging
an order of magnitude faster than the hard manual configuration for all cases. For expressions 1 and 2 the optimal
manual and the DDN approach yield similar performances, with the latter being better for expression 1 and inferior for
expression 2. It should be noted that the DDN approach achieved this performance without any a priori knowledge
about a suitable factorization.

For the fictional expression 3 the dimension aware method yield a significantly higher probability to yield the original
formula. This supports the assumption formulated above that sums of dimensional constants in a target expression may
be particularly difficult to be found by the manual approach. Interestingly, the discarding approach is also better than the
DDN approach in this case. One reason might be that the dynamic normalization would not normalize a sum with
another sum, thus decreasing the likelihood of such expression compared to the discarding method. E.g., in the case of
expression 3 an occurrence of (`𝑡 − `𝑚) would always be normalized with ‖Ω‖ or ‖𝑆‖, but not with (‖Ω‖ + ‖𝑆‖). For
expressions 1 and 2 the discarding approach is between the DDN and manual approach. Nevertheless, its convergence
seems strongly dependent on the number of individuals per generation. A more detailed investigation is beyond the
scope of this paper. Nevertheless, we can summarize that the methods which use input quantities directly and enable
knowledge about their dimensions are mostly superior or yield convergence close to an optimal manual configuration.

VI. Application on transitional turbomachinery test cases

A. Test case selection
In order to validate the proposed method of dynamic dimension normalization, we apply it to two turbomachinery

test cases featuring a transition induced separation. The turbine profiles T106C and T107A at Reynolds numbers
of 80 000 as well as 700 000 are used for training. The profile T107A at a Reynolds number of 300 000 is used for
validation.

The original formulation of the 𝑘 − 𝜔 model from Wilcox [14] does not predict the flow separation, which can
be observed when looking at the LES data for T106C published in [15]. It further fails to predict the separations for
T107A observed in the experiments by Hoeger [16]. This profile is an interesting testcase in a sense that the mechanism
of the transition related separation shifts from a separation induced transition at lower Reynolds numbers to a mere
bypass transition at higher Reynolds numbers. This effect is thoroughly investigated in [17]. Therefore, this selection of
testcases features a variation in geometry as well as a nontrivial variation in different effects due to Reynolds number
variation.

B. Model setup
A typical approach to augment turbulence models to better predict transitional flows is to apply a correction factor

on the turbulent kinetic energy production term. This correction has been done similarly for other turbulence models in

9

several publications [2, 5, 18, 19]. Nevertheless, in order to consider the nonlocal nature of transition, the production
term is not corrected directly using an algebraic expression. Instead, the correction factor is modelled by an additional
convection-diffusion equation, of which we model the production term using GEP generated expressions. Additionally,
the values of the resulting correction term are capped to a range between a value of close to zero and two, yielding the
following model adaption:

𝜕

𝜕𝑡
(𝜌𝑘) + 𝜕

𝜕𝑥 𝑗

(
𝜌𝑢 𝑗 𝑘

)
= 𝜸∗︸︷︷︸

correction

production︷ ︸︸ ︷
𝜏𝑖 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗

−𝐶𝑃,𝑘 𝜌𝜔𝑘+ 𝜕

𝜕𝑥 𝑗

[
(` + 𝐶𝜎`𝑡)

𝜕𝑘

𝜕𝑥 𝑗

]
𝛾∗ = max(min(𝛾, 2), 10−5)

𝜕 (𝜌𝛾)
𝜕𝑡

+
𝜕
(
𝜌𝑢 𝑗𝛾

)
𝜕𝑥 𝑗

=
𝜕

𝜕𝑥 𝑗

[(
` + 𝜎𝛾`𝑡

) 𝜕𝛾

𝜕𝑥 𝑗

]
+ 𝑃GEP

Note that the constants and capping boundaries are assumed fixed, based on a priori experience and are not subject
to optimization in the scope of this work. This approach can be interpreted in two different ways. First, it can be
considered as finding a new source term for a slightly modified version of the 𝛾 transition models described in [20]. On
the other hand, modelling source terms of partial differential equations instead of directly using algebraic expression can
be considered as a simple and mesh independent way of including nonlocal effects into machine learning models.

C. Fitness evaluation
The turbine profile T106C at a Reynolds number of 80 000 as well as the profile T107A at Reynolds numbers

100 000 and 300 000 are used as training data. The turbine profile T107A at a Reynolds number of 700 000 is used as
validation data.

First, the fitness of the investigated individual is evaluated by executing one CFD simulation with the resulting
expression for each of the three training cases. Afterward, the deviation of the CFD results from the reference data is
calculated. The deviation from reference data is normalized in a way that it yields a value of 1 for the default 𝑘 − 𝜔
model for each training case. Hence, all three cases are prioritized equally. For T106C the pressure distribution of
the whole blade is used as reference data. Regarding the experimental data of T107A, we only use the tail area of the
blade. Due to the way in which the experimental data was extracted, there might be inaccuracies when mapping the
nondimensional 𝑥-positions back onto the upstream parts of the blade surface.

All CFD computations have been conducted using the CFD code TRACE developed at the German Aerospace
Center [21].

VII. Results for the CFD-driven GEP evaluation

A. Convergence
We applied the manual approach as well as the DDN approach on two CFD-driven GEP optimizations, in order to

find potential transition models focused on turbomachinery cases. Since we do not have any a priori knowledge about
the structure of the best possible model, the choice of nondimensional input features for the manual approach will likely
not be optimal. For the DDN approach, we provide the following quantities to model the production term:

𝑃𝛾 = 𝑓 (𝛾, ‖𝑆‖, ‖Ω‖, 𝜌, 𝑤𝑑 , `𝑡 , `𝑚, 𝑘, 𝜔, 𝜏𝑤)

For the manual approach, these inputs are combined into a set of nondimensional input features:

𝑃𝛾 = 𝑓 (𝛾, ‖𝑆‖‖Ω‖ ,
𝑘 𝜌

𝜏𝑤
,
𝜔𝑤𝑑√

𝑘
,
`𝑡

`𝑚
)

Furthermore, we enable the addition of random numerical constants (RNC) [8]. This algorithm adds further slots to
the genes as described in section III.A. Nevertheless, it is fully compatible with the newly proposed approach.

10

Generation

F
it

n
e

s
s

 o
f

b
e

s
t

0 10 20 30 40 50

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Manual approach
DDN approach

(a) Fitness of the best individual for each generation

Normalized deviation T107A Re=700K

N
o

rm
a

li
ze

d
 d

e
v

ia
ti

o
n

 T
1

0
6

C
 R

e
=

9
0

K

0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

Generation: 0 10 20 30 40 50

Manual approach
DDN approach

(b) Pareto front for T106C and T107A (Re=700K)

Fig. 8 Convergence of the GEP investigation for the manual and the DDN approach.

Figure 8a shows the overall fitness value of the best individual per generation. Since elitism is enabled, the values
are decreasing monotonously. Given these two executions, the newly proposed approach converges faster and to a lower
minimum. The pareto front depicted in Fig. 8b further indicates that the DDN approach produces more individuals
with a high fitness compared to the manual approach in this case. This behaviour is generally in accordance with the
observations demonstrated in section V. It shows that the new approach has the potential to improve the performance
of a GEP investigation. Nevertheless, since evolutionary algorithms are highly stochastic, the execution of only one
optimization per test case is not sufficient to derive a general statement. Furthermore, the selection of another set of
nondimensionalized input features may yield different results. Due to the cost of a CFD-driven GEP evaluation this is
beyond the scope of this paper.

B. CFD results
Table 2 lists a selection of the best and well performing individuals for both approaches. Floating point numbers

generated by the RNC algorithm are rounded. Expressions from the manual approach are indicated by the letter M,
whereas D denotes the DDN approach. Expression D4 and M3 have the best overall fitness. Expressions M1, M2,
D1, D2 and D5 yield a minimal deviation for a certain case (marked with a box). Expression D3 has been chosen
due to its low complexity. The remaining deviations from the reference data are an order of magnitude lower for test
case T106C when compared to test cases using the profile T107A. This also holds for the similar Reynolds number of
150 000, yet less severe. Note that T106C is using an LES solution as reference data, whereas T107A is compared
against experimental data. This may be one reason for the remaining deviations. Nevertheless, for higher Reynolds
numbers, the transition mechanism of turbine profile T107A changes as mentioned in section VI.A and described in
more detail in [17]. Therefore, it is expected that the transition at higher Reynolds numbers is more difficult to be
captured. The validation case T107A at a Reynolds number of 300 000 yields deviations at the order of magnitude of
the lower Reynolds numbers for the same blade geometry.

Figure 9 provides a more detailed insight into the performance of a subset of the augmented models. It shows the
pressure distribution along the trailing part of the suction sides of the corresponding blades. For the lower Reynolds
numbers of testcase T107A and T106C sown in Fig. 9a and 9b the models D1 and M2 are able to capture the separation
characteristics. While the shape of the separation for T107A at Reynolds number 150 000 in Fig. 9b is captured better
by model D1, the overall pressure level upstream the separation is worse compared to the other models. For higher
Reynolds numbers as shown in Fig. 9d and 9c, all models are able to improve the overall pressure level. On the other
hand, they fail to predict the characteristic transition related separation.

In summary, the manual approach as well as the DDN approach were able to find transition models which reduce the

11

x/L

C
p

0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

D1
D2
D4
M1
M2
M3
Orig.
LES

(a) T106C (Training set)
x/L

C
p

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

-0.6

-0.4

-0.2

0

0.2

D1
D2
D4
M1
M2
M3
Experiment
Orig.

(b) T107A Re=150 (Training set)

x/L

C
p

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

-0.4

-0.2

0

0.2

D1
D2
D4
M1
M2
M3
Experiment
Orig.

(c) T107A Re=700 (Training set)
x/L

C
p

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

-0.6

-0.4

-0.2

0

0.2

D1
D2
D4
M1
M2
M3
Experiment
Orig.

(d) T107A Re=300 (Validation set)

Fig. 9 Performance of a selection of the best performing models.

12

Table 2 Best and well performing expression found by the manual and DDN approach

Id Expression Fitness T107A T107A T106C T107A

Re=150k Re=700k Re=80k Re=300k

Training Validation

M1 0.275 − a𝑚
a𝑡
+ 1.11 𝜏𝑤

𝜌𝑘
2.056 0.474 0.664 0.918 0.519

M2 𝛾 + 𝜔𝑤𝑑√
𝑘
+ a𝑡

a𝑚
− a𝑚

a𝑡
1.613 0.689 0.882 0.042 0.625

M3 2.998 + 𝜔𝑤𝑑√
𝑘
− a𝑚

a𝑡
‖ 1.322 0.580 0.652 0.091 0.593

D1 ‖Ω‖
(

2
𝜔
+ 3 a𝑚

𝜌𝑘
+ 2.103
‖𝑆 ‖

)
− a𝑡

a𝑚
1.209 0.587 0.558 0.063 0.595

D2 (‖𝑆 ‖+2𝜔) (‖Ω‖ (𝜌𝑘−a𝑡𝜔)+𝜌𝑘𝜔)
‖𝑆 ‖𝜌𝑘𝜔 1.223 0.448 0.729 0.0465 0.469

D3 𝜔

(
2
‖𝑆 ‖ −

a𝑡
𝜌𝑘

)
1.214 0.450 0.708 0.056 0.478

D4 𝜔
‖𝑆 ‖𝜌𝑘−‖Ω‖ (‖𝑆 ‖a𝑡−a𝑚𝜔)

‖𝑆 ‖2𝜌𝑘 1.206 0.451 0.70 0.056 0.470

D5 𝜔
‖𝑆 ‖ (𝛾a𝑡+2a𝑚−2a𝑡)+𝜌𝑘

‖Ω‖𝜌𝑘 1.487 0.446 0.758 0.282 0.459

deviation to the given reference data significantly. Additionally, some models are able to predict the separation for lower
Reynolds numbers. For the given cases, the DDN approach found more well performing models in a shorter period of
time.

VIII. Conclusion
We proposed a new method to enhance the convergence of GEP optimizations by utilizing knowledge about the

physical dimensions of the relevant input quantities. It extends the genes with encoded information to fix invalid physical
dimensions of given expressions. Using a validation set of a priori known reference formula, it was shown that the new
approach may increase the probability of finding the correct function representation during an early generation. This is
particularly the case, if no knowledge about an optimal set of nondimensional input features is available a priori. In
future works, it should be evaluated more thoroughly how the observed advantage depends on the structure of the target
formula, the type of required operators, the number of input parameters and the number of relevant physical dimensions.

Furthermore, we applied the new method to find potential transition models using a CFD-driven GEP optimization.
Several expressions could be found that are able to predict the flow separation of two turbine profiles at low Reynolds
numbers. Nevertheless, a more general transition model will require the use of additional reference testcases. Also the
use of additional operators such as min or max should be considered.

References
[1] Ling, J., Kurzawski, A., and Templeton, J., “Reynolds averaged turbulence modelling using deep neural networks with embedded

invariance,” Journal of Fluid Mechanics, Vol. 807, 2016, pp. 155–166. https://doi.org/10.1017/jfm.2016.615.

[2] Parish, E. J., and Duraisamy, K., “A paradigm for data-driven predictive modeling using field inversion and machine learning,”
Journal of Computational Physics, Vol. 305, 2016, pp. 758–774. https://doi.org/10.1016/j.jcp.2015.11.012.

[3] Weatheritt, J., and Sandberg, R., “A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain
relationship,” Journal of Computational Physics, Vol. 325, 2016, pp. 22–37. https://doi.org/10.1016/j.jcp.2016.08.015.

[4] Zhao, Y., Akolekar, H. D., Weatheritt, J., Michelassi, V., and Sandberg, R. D., “RANS turbulence model development using

13

https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1016/j.jcp.2015.11.012
https://doi.org/10.1016/j.jcp.2016.08.015

CFD-driven machine learning,” Journal of Computational Physics, Vol. 411, 2020, p. 109413. https://doi.org/10.1016/j.jcp.
2020.109413.

[5] Holland, J., Baeder, J., and Duraisamy, K., “Field Inversion and Machine Learning With Embedded Neural Networks:
Physics-Consistent Neural Network Training,” 2019. https://doi.org/10.2514/6.2019-3200.

[6] Ma, W., Zhang, J., Feng, K., Xing, H., and Wen, D., “Dimensional homogeneity constrained gene expression programming for
discovering governing equations from noisy and scarce data,” arXiv, 2022. https://doi.org/10.48550/arXiv.2211.09679.

[7] Koza, J. R., Genetic Programming: On the Programming of Computers by Means of Natural Selection (Complex Adaptive
Systems), Bradford Books, 1993, p. 18.

[8] Ferreira, C., “Gene Expression Programming: A New Adaptive Algorithm for Solving Problems,” Complex Systems, Vol. 13,
No. 2, 2001. URL https://www.complex-systems.com/abstracts/v13_i02_a01/.

[9] Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K., Singh, S.,
Rathnayake, T., Vig, S., Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J.,
Terrel, A. R., Roučka, Š., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and Scopatz, A., “SymPy: symbolic computing in
Python,” PeerJ Computer Science, Vol. 3, 2017, p. e103. https://doi.org/10.7717/peerj-cs.103.

[10] Havas, G., Majewski, B. S., and Matthews, K. R., “Extended GCD and Hermite Normal Form Algorithms via Lattice Basis
Reduction,” Experimental Mathematics, Vol. 7, No. 2, 1998, pp. 125–136. https://doi.org/10.1080/10586458.1998.10504362.

[11] Close, T. G., “Diophantine,” GitHub Repository, 2017. URL https://github.com/tclose/Diophantine.

[12] Shuhua Gao, Morgan, A., and M, T., “ShuhuaGao/geppy: Release 0.1 of geppy,” , 2020. https://doi.org/10.5281/zenodo.3946297.

[13] Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., and Gagné, C., “DEAP: Evolutionary Algorithms Made Easy,”
Journal of Machine Learning Research, Vol. 13, 2012, pp. 2171–2175. URL https://github.com/DEAP/deap.

[14] Wilcox, D. C., “Reassessment of the scale-determining equation for advanced turbulence models,” AIAA Journal, Vol. 26,
No. 11, 1988, pp. 1299–1310. https://doi.org/10.2514/3.10041.

[15] Morsbach, C., and Bergmann, M., “Critical Analysis of the Numerical Setup for the Large-Eddy Simulation of the Low-Pressure
Turbine Profile T106C,” Direct and Large Eddy Simulation XII, Springer International Publishing, Cham, 2020, pp. 343–348.
https://doi.org/10.1007/978-3-030-42822-8_45.

[16] Hoeger, “Experimentelle Untersuchungen am Turbinengitter T107. Teil 2: Grenzschichtmessungen mit Dünnfilmen und
Pitotsonde,” Tech. Rep. IB 129-84/39, DFVLR, 1984.

[17] Marciniak, V., “Phenomenological transition modelling for turbomachinery flows,” Doctoral thesis, Ruhr-Universität Bochum,
2016. URL https://nbn-resolving.org/urn:nbn:de:hbz:294-47825.

[18] Ferrero, A., Iollo, A., and Larocca, F., “Field inversion for data-augmented RANS modelling in turbomachinery flows,”
Computers and Fluids, Vol. 201, 2020, p. 104474. https://doi.org/https://doi.org/10.1016/j.compfluid.2020.104474.

[19] Jäckel, F., “A Closed-form Correction for the Spalart-Allmaras Turbulence model for Separated Flows,” AIAA SCITECH 2022
Forum, 2022. https://doi.org/10.2514/6.2022-0462.

[20] Menter, F. R., Smirnov, P. E., Liu, T., and Avancha, R., “A One-Equation Local Correlation-Based Transition Model,” Flow,
Turbulence and Combustion, 2015, pp. 583–619. https://doi.org/10.1007/s10494-015-9622-4.

[21] Geiser, G., Wellner, J., Kügeler, E., Weber, A., and Moors, A., “On the Simulation and Spectral Analysis of Unsteady
Turbulence and Transition Effects in a Multistage Low Pressure Turbine,” Journal of Turbomachinery, Vol. 141, No. 5, 2019.
https://doi.org/10.1115/1.4041820.

14

https://doi.org/10.1016/j.jcp.2020.109413
https://doi.org/10.1016/j.jcp.2020.109413
https://doi.org/10.2514/6.2019-3200
https://doi.org/10.48550/arXiv.2211.09679
https://www.complex-systems.com/abstracts/v13_i02_a01/
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1080/10586458.1998.10504362
https://github.com/tclose/Diophantine
https://doi.org/10.5281/zenodo.3946297
https://github.com/DEAP/deap
https://doi.org/10.2514/3.10041
https://doi.org/10.1007/978-3-030-42822-8_45
https://nbn-resolving.org/urn:nbn:de:hbz:294-47825
https://doi.org/https://doi.org/10.1016/j.compfluid.2020.104474
https://doi.org/10.2514/6.2022-0462
https://doi.org/10.1007/s10494-015-9622-4
https://doi.org/10.1115/1.4041820

	Nomenclature
	Introduction
	Genetic Programming
	Gene Expression Programming
	CFD-driven approach

	Accounting for physical dimensions
	Manual approach
	Discarding approach
	Dynamic Dimension Normalization

	Compare performance of dimensional aware GEP approaches
	Comparison with the manual approach
	Performance of the different algorithms

	Application on transitional turbomachinery test cases
	Test case selection
	Model setup
	Fitness evaluation

	Results for the CFD-driven GEP evaluation
	Convergence
	CFD results

	Conclusion

