Yan, Yashuai and Mascaro, Esteve Valls and Lee, Dongheui (2024) ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space. In: 22nd IEEE-RAS International Conference on Humanoid Robots, Humanoids 2023, pp. 1-8. IEEE. 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids), 2023-12-12 - 2023-12-14, Austin, TX, USA. doi: 10.1109/Humanoids57100.2023.10375150. ISBN 979-835030327-8. ISSN 2164-0572.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/document/10375150
Abstract
This paper introduces a novel deep-learning approach for human-to-robot motion retargeting, enabling robots to mimic human poses accurately. Contrary to prior deep-learning-based works, our method does not require paired human-to-robot data, which facilitates its translation to new robots. First, we construct a shared latent space between humans and robots via adaptive contrastive learning that takes advantage of a proposed cross-domain similarity metric between the human and robot poses. Additionally, we propose a consistency term to build a common latent space that captures the similarity of the poses with precision while allowing direct robot motion control from the latent space. For instance, we can generate in-between motion through simple linear interpolation between two projected human poses. We conduct a comprehensive evaluation of robot control from diverse modalities (i.e., texts, RGB videos, and key poses), which facilitates robot control for non-expert users. Our model outperforms existing works regarding human-to-robot retargeting in terms of efficiency and precision. Finally, we implemented our method in a real robot with self-collision avoidance through a whole-body controller to showcase the effectiveness of our approach.
Item URL in elib: | https://elib.dlr.de/202150/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 1 January 2024 | ||||||||||||||||
Journal or Publication Title: | 22nd IEEE-RAS International Conference on Humanoid Robots, Humanoids 2023 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/Humanoids57100.2023.10375150 | ||||||||||||||||
Page Range: | pp. 1-8 | ||||||||||||||||
Publisher: | IEEE | ||||||||||||||||
ISSN: | 2164-0572 | ||||||||||||||||
ISBN: | 979-835030327-8 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | motion retargeting | ||||||||||||||||
Event Title: | 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids) | ||||||||||||||||
Event Location: | Austin, TX, USA | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 12 December 2023 | ||||||||||||||||
Event End Date: | 14 December 2023 | ||||||||||||||||
Organizer: | IEEE-RAS | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||
DLR - Research theme (Project): | R - Basic Technologies [RO] | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) | ||||||||||||||||
Deposited By: | Strobl, Dr. Klaus H. | ||||||||||||||||
Deposited On: | 23 Jan 2024 15:22 | ||||||||||||||||
Last Modified: | 24 Apr 2024 21:02 |
Repository Staff Only: item control page