elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Can Land Cover Classification Models Benefit From Distance-Aware Architectures?

Koller, Christoph und Jung, Peter und Zhu, Xiao Xiang (2024) Can Land Cover Classification Models Benefit From Distance-Aware Architectures? IEEE Geoscience and Remote Sensing Letters (21), Seiten 1-5. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2024.3375370. ISSN 1545-598X.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Offizielle URL: https://ieeexplore.ieee.org/document/10496594

Kurzfassung

The quantification of predictive uncertainties helps to understand where existing models struggle to find the correct prediction. A useful quality control tool is the task of detecting out-of-distribution (OOD) data by examining the model’s predictive uncertainty. For this task, deterministic single forward pass frameworks have recently been established as deep learning models and have shown competitive performance in certain tasks. The unique combination of spectrally normalized weight matrices and residual connection networks with an approximate Gaussian Process output layer can here offer the best trade-off between performance and complexity. We utilize this framework with a refined version that adds spectral batch normalization and an inducing points approximation of the Gaussian Process for the task of OOD detection in remote sensing image classification. This is an important task in the field of remote sensing because it provides an evaluation of how reliable the model’s predictive uncertainty estimates are. By performing experiments on the benchmark datasets Eurosat and So2Sat LCZ42, we can show the effectiveness of the proposed adaptions to the residual networks. Depending on the chosen dataset, the proposed methodology achieves OOD detection performance up to 16% higher than previously considered distance-aware networks. Compared to other uncertainty quantification methodologies, the results are on the same level and exceed them in certain experiments by up to 2%. In particular, spectral batch normalization, which normalizes the batched data as opposed to normalizing the network weights by the spectral normalization, plays a crucial role and leads to performance gains of up to 3% in every single experiment.

elib-URL des Eintrags:https://elib.dlr.de/201764/
Dokumentart:Zeitschriftenbeitrag
Titel:Can Land Cover Classification Models Benefit From Distance-Aware Architectures?
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Koller, ChristophChristoph.Koller (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Jung, Peterpeter.jung (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiaoxiang.zhu (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:April 2024
Erschienen in:IEEE Geoscience and Remote Sensing Letters
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/LGRS.2024.3375370
Seitenbereich:Seiten 1-5
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1545-598X
Status:veröffentlicht
Stichwörter:Land Cover Classification, Distance Awareness, Spectral Normalization, Uncertainty Quantification, Out-of-Distribution (OOD)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Berlin-Adlershof , Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Institut für Optische Sensorsysteme
Hinterlegt von: Koller, Christoph
Hinterlegt am:24 Jul 2024 10:08
Letzte Änderung:13 Aug 2024 16:22

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.