
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 21, 2024 6007105

Can Land Cover Classification Models Benefit
From Distance-Aware Architectures?
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Abstract— The quantification of predictive uncertainties helps
to understand where the existing models struggle to find the
correct prediction. A useful quality control tool is the task
of detecting out-of-distribution (OOD) data by examining the
model’s predictive uncertainty. For this task, deterministic single
forward pass frameworks have recently been established as deep
learning models and have shown competitive performance in
certain tasks. The unique combination of spectrally normal-
ized weight matrices and residual connection networks with
an approximate Gaussian process (GP) output layer can here
offer the best trade-off between performance and complexity.
We utilize this framework with a refined version that adds
spectral batch normalization and an inducing points approx-
imation of the GP for the task of OOD detection in remote
sensing image classification. This is an important task in the
field of remote sensing, because it provides an evaluation
of how reliable the model’s predictive uncertainty estimates
are. By performing experiments on the benchmark datasets
Eurosat and So2Sat LCZ42, we can show the effectiveness
of the proposed adaptions to the residual networks (ResNets).
Depending on the chosen dataset, the proposed methodology
achieves OOD detection performance up to 16% higher than
previously considered distance-aware networks. Compared with
other uncertainty quantification methodologies, the results are
on the same level and exceed them in certain experiments by
up to 2%. In particular, spectral batch normalization, which
normalizes the batched data as opposed to normalizing the
network weights by the spectral normalization (SN), plays a
crucial role and leads to performance gains of up to 3% in every
single experiment. For reproducibility, the code can be found
here: https://github.com/ChrisKo94/DUE_Land_Cover.

Index Terms— Distance awareness, land cover classification,
out-of-distribution (OOD), spectral normalization (SN), uncer-
tainty quantification.
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I. INTRODUCTION

OVER the last decade, the urgency for having a notion of
uncertainty along with a model’s prediction has arisen

in many research communities. Many different techniques
have been invented and developed by the machine and deep
learning community [1]. Out of the developed approaches,
many uncertainty quantification techniques solely focus on
cleverly transforming the output of one or multiple deep
learning models. In their work, Lakshminarayanan et al. [2]
train multiple neural networks in parallel and achieve state-of-
the-art performance on many computer vision and regression
tasks. The combination of the individual model predictions
also yields an expressive notion of model uncertainty. Another
famous example is given by Monte Carlo dropout [3], where
the model architecture is left unchanged during inference time
with the exception of leaving the existing dropout mechanism
enabled. Again, the resulting predictions give a sense of model
uncertainty accompanying the prediction itself.

More methodologically advanced approaches are covered
exemplarily by the broad field of Bayesian neural networks [4].
Here, the individual weights of a neural network architecture
are not treated as fixed parameters, but rather as distributions.
While tracing the exact likelihood of such networks becomes
infeasible and computationally expensive, uncertainties can
be modeled much more fine-grained by averaging over the
posterior weight distributions. Many extensions of the core
idea have been introduced, for example, a sampling-free
variational inference approach [5], or a method for inference
on the subnetwork level [6].

Contrastive to the Bayesian approaches, deterministic meth-
ods do not place distributional assumptions over parts of the
network and do not rely on sampling from distributions or
predictions. Especially, for the downstream task of detect-
ing out-of-distribution (OOD) data, this class of networks
has been shown to yield competitive performance [7]. The
approaches can generally be divided into generative and dis-
criminative ones. Generative approaches utilize an explicit
likelihood from a generative model, whereas discriminative
approaches use regularized predictions to form their predictive
uncertainties.

Regarding the applicability and usefulness of such uncer-
tainty quantification approaches in the field of remote sensing,
little work has been done so far. Landgraf et al. [8] modified
the loss function to incorporate predictive uncertainties during
training and showed convincing results on semantic segmen-
tation tasks. Regarding OOD detection, Gawlikowski et al. [9]
used a Dirichlet prior network that yielded strong performance
on a range of remote sensing image classification datasets
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with respect to OOD detection. The little attention paid to
uncertainty quantification in deep neural networks for remote
sensing motivates this work, which is focused on employing
so-called distance-aware network architectures by ensuring
Lipschitz continuity of the network mapping from the input
to the output space.

II. METHODOLOGY

We now present the general framework of distance-aware
uncertainty quantification as initially presented by
Liu et al. [10] and refined by van Amersfoort et al. [11].
The distance awareness here refers to the model’s capacity
to adequately project distances in the input space onto
the output space or prediction of the model. As explained
in [10], this is equivalent to the existence of a notion
of uncertainty u: F(X ) → R+ satisfying this adequate
projection property. This uncertainty measure operates on
the output space of the network F , and X here describes
the input space of the network. For a new point x ∈ X
and the training data Xtrain ⊂ X , we first denote a
fitting metric by d: X × X → R+, e.g., of the form
dX (x1, x2) = ∥x1 − x2∥X , x1, x2 ∈ X with an arbitrary
yet suitable norm. With this metric, for the network to be
distance-aware, the uncertainty measure u needs to satisfy

∀x ∈ X : u(x) = v
(
Ex ′∼Xtrain d

(
x, x ′

))
(1)

for a given monotonically increasing function v: R+ → R+.

A. Hidden Mapping Distance Preservation

Consider a neural network classifier, which yields the
well-known unscaled prediction logit(x) = g ◦ h(x), where h
describes the hidden mapping, i.e., all layers up until the last
hidden representation and g describes the output mapping onto
the label space. In this scenario, the distance awareness can be
separately defined for both mappings. Regarding the hidden
mapping h, Lakshminarayanan et al. [10] state that the dis-
tance awareness is here equivalent to fulfilling a bi-Lipschitz
constraint of h. This means that there need to exist constants
0 < L1 ≤ 1 ≤ L2, such that

L1 · dX
(
x, x ′

)
≤ dX

(
h(x), h

(
x ′

))
≤ L2 · dX

(
x, x ′

)
(2)

holds for all x, x ′
∈ X .

Several regularization techniques have been established to
enforce this constraint. For example, the constraint can be ful-
filled for differentiable functions if the norms of the gradients
are bounded. This can be enforced by adding a penalty term
PL (the subscript L stands for loss) of the form

PL := λ ·
[
∥∇x fθ (x)∥2

2 − L2
]2

(3)

to the loss function, where ∇x fθ (x) denotes the gradient of
the neural network mapping with respect to x , L2 is the earlier
mentioned upper Lipschitz constant, and λ denotes a hyperpa-
rameter steering the impact of the gradient penalty on the loss.
This procedure is called two-sided gradient penalty and has
been successfully applied to generative adversarial networks
(GANs) [12] and radial basis function (RBF) networks [13].
Alternatively, the Lipschitz constant L2 can be controlled by

normalizing the weight matrices of every layer. Specifically,
the Lipschitz constant of a fully connected layer fk(x) = W x
can be represented via the following:

∥ f ∥Lip = sup σ(∇ fk(x)), where

σ(A) := max
x :x ̸=0

∥Ax∥2

∥x∥2
= max

∥x∥2≤1
∥Ax∥2. (4)

This spectral norm is equivalent to the largest singular value
of A. Since most common activation functions have Lipschitz
norm 1 (or predefined L), the Lipschitz constant of a neural
network can be computed by the multiplication of the Lip-
schitz constants of the individual layers. Miyato et al. [14]
made use of the normalization of every layer weight matrix
via spectral norm (pointwise division) with respect to the
l2 norm for GANs. This proved to be superior over other
weight clipping or regularization techniques (e.g., [15], [16])
and over the gradient penalty earlier introduced.

B. ResNet Hidden Mapping

A key neural network architecture for remote sensing image
classification is the class of residual networks (ResNets). Since
the now following approach is tailored toward ResNets, it is
highly relevant for the remote sensing field. For ResNets [17],
there exists a more profound way to control the bi-Lipschitz
constraint of the hidden mapping h. The hidden mapping is
here given via h(x) = hl ◦ hl−1 ◦ · · · ◦ h1(x), where h j (x) =

x +γ j (x), j = 1, . . . , l, denotes the individual residual blocks.
If and only if all of the residual mappings γ j (x) j = 1, . . . , l
of the residual blocks are α-Lipschitz for 0 < α < 1 on X , the
bi-Lipschitz condition in (2) holds. Because the concatenation
of α-Lipschitz functions is again α-Lipschitz [18], the individ-
ual Lipschitz conditions are sufficient for the bi-Lipschitzness
of the entire hidden mapping h. For the l residual blocks
contained in h, we are then left with the following Lipschitz
constants:

0 < L1 = (1 − α)l < 1 < L2 = (1 + α)l < ∞. (5)

Given the dataset spans over all of Rn with respect to the
Euclidean norm, the condition α < 1 of the bi-Lipschitzness is
equivalent to bounding the spectral norm (i.e., largest singular
value λ ) of the weight matrix W j of γ j . In more realistic
settings, the spectral norm needs to be approximated. The
power iteration presented by Behrmann et al. [20] is most
often used in practice for this approximation due to its fast
convergence. In order to bound the spectral norm for each layer
j = 1, . . . , l, the respective weight matrix of the convolutional
layer is updated via

W j =

{
c · W j

/
λ̂ , if c < λ̂

W j , otherwise
(6)

where λ̂ is the approximation for λ obtained by the power
iteration. Also, c denotes a hyperparameter to practically
control the exact upper bound depending on the input data.

As a novelty compared with a previous study [19], we here
follow the convention of [11] and apply the spectral normal-
ization (SN) also to the batch normalization. The Lipschitz
constant of the batch normalization operator is given by
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TABLE I
EXPERIMENTAL RESULTS ON THE EUROSAT DATASET. AUROC AND AUPR ARE DERIVED FROM A BINARY CLASSIFIER FED WITH ID AND OOD

DATA FROM THE TEST SET. AUROC = AREA UNDER RECEIVER OPERATOR CURVE, AUPR = AREA UNDER PRECISION RECALL CURVE,
DSM = DEMPSTER–SHAFER METRIC, MSP = 1 − MAXIMUM SOFTMAX PROBABILITY, AND PRED.ENT. = PREDICTIVE ENTROPY.

BEST RESULTS BY UNCERTAINTY MEASURE IN BOLD, AND OVERALL BEST RESULTS ARE UNDERLINED

maxi |(ηi/(Var(x)i )
1/2)| [21], with η being the learnable scale

parameter and i being the index describing the batch size.
This normalization differs from plain SN, because it is input
data-driven and does not alter the network mapping by a single
hyperparameter.

C. Output Mapping Distance Awareness

The distance awareness of the output mapping g can be
handled via modeling g as a Gaussian process (GP) [22] on
the hidden mapping output space H := {h(x):x ∈ X }. This
process is generally specified by a mean function m(h) and
a covariance function k(h, h′). Then, an uninformative prior
with a mean of 0 and an RBF kernel is placed on the latent
process. The likelihood gets built by exposing the GP to all
training data; after that the process gets optimized a posteriori.
Due to computational and analytical intractability, the spectral
normalization + Gaussian process (SNGP) approach [10]
proposes the following: 1) a random Fourier feature (RFF)
expansion [23] of the initial GP followed by 2) a Laplace
approximation for the posterior. We refer the interested reader
to [24]. Note that the SNGP approach proved to effectively
increase the model’s predictive uncertainty quality in an OOD
detection setting for remote sensing image classification [19].

Novel to this work is the usage of the deterministic
uncertainty estimation (DUE) framework proposed by van
Amersfoort et al. [11], which will be investigated by various
experiments in the following. For DUE, the GP gets placed
directly onto the last layer of the hidden mapping. Then,
the K -means algorithm is used to identify m inducing points
(defined via the centroids found by the algorithm) in the hidden
mapping feature space. The GP is then evaluated only on these
points, which keeps the GP nonparametric (as opposed to the
RFF expansion in the case of SNGP) [11]. For optimization,
the expectation lower bound (ELBO) between the induced

GP and the full likelihood is minimized, and the loss gets
backpropagated as usual using stochastic gradient descent
(SGD).

III. EXPERIMENT

For the experimental section, we investigate different net-
works for OOD detection in the context of land cover
classification for remote sensing images. In particular, we eval-
uate the predictive uncertainties on unseen classes for which
we differentiate between built-up classes and nonbuilt classes
and train on one set and predict on another and vice versa.
We closely follow the code implementation of van Amers-
foort et al. [11], which can be found in [25]. We expand the
experiments conducted by Koller et al. [19] by adding another
deterministic uncertainty quantification technique, DUE. It is
here denoted by GP-IP, which stands for a GP output mapping
with the inducing points (IPs) approximation by van Amers-
foort et al. [11]. We compare GP-IP to SNGP output mapping
as well as SN and GP individually and the aforementioned
batch normalization (BN). Two core networks are considered:
ResNets with a depth of 50 (ResNet50) and wide ResNets with
a depth of 28 (WideResNet). The OOD detection is carried out
by a binary classifier defined by the predictive uncertainties,
on which the area under the receiver operator curve (AUROC)
and under the precision recall curve (AUPR) are derived.
The Dempster–Shafer metric (DSM) and 1 − the maximum
softmax probability (MSP) have already been previously used
as uncertainty metric in [19]; here, the predictive entropy of the
softmax prediction (Pred.Ent.) is added specifically for GP-IP
approaches.

Adding to the experimental setup presented by
Koller et al. [19], we conduct OOD detection on another
remote sensing image classification benchmark dataset,
namely, on the So2Sat LCZ42 [26] dataset. This dataset
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TABLE II
EXPERIMENTAL RESULTS ON THE SO2SAT LCZ42 DATASET. AUROC AND AUPR ARE DERIVED FROM A BINARY CLASSIFIER FED WITH ID AND
OOD DATA FROM THE TEST SET. AUROC = AREA UNDER RECEIVER OPERATOR CURVE, AUPR = AREA UNDER PRECISION RECALL CURVE,

DSM = DEMPSTER–SHAFER METRIC, MSP = 1 − MAXIMUM SOFTMAX PROBABILITY, AND PRED.ENT. = PREDICTIVE ENTROPY.
BEST RESULTS BY UNCERTAINTY MEASURE IN BOLD, AND OVERALL BEST RESULTS ARE UNDERLINED

contains labeled Sentinel-2 imagery of 42 urban conglomerates
around the world. The labels follow the local climate zone
(LCZ) scheme from [27]. We split the 17 classes into built-up
(seven) and nonbuilt (ten) classes for the OOD detection
task. This split is widely used, and a label evaluation study
performed by Zhu et al. [26] showed little to no label
ambiguity between the two label sets. We use the training
set of the publicly available cultural split of the dataset and
randomly separate it into training and testing with 70% and
30%, respectively. The EuroSat dataset [28] also contains
labeled Sentinel-2 patches, with a ten-class land cover
labeling scheme. It was split similarly, with only two of the
ten classes being specified as built-up classes. For additional
details and class descriptions regarding the Eurosat dataset,
see [19] for details.

Regarding the core network and the SNGP approach,
we use the same hyperparameters as initially stated by
Koller et al. [19] with the exception of having a width
of k = 5 for the WideResNet (WRN). Although a width
of 1 outperformed the full WRN network in the previous
work [19], we saw stronger performance with a width of
5 in the case of the DUE approach. The width is a key
parameter for the WideResNet, as it controls how many filters
are trained in parallel for each convolution. We chose a width
of 5, because it clearly outperformed networks with less width
and was still running in a reasonable amount of time. The
strong performance may be due to the nature of the GP
output mapping: before, the GP was evaluated completely;
now, a limited number of IPs keep the output mapping more
flexible and allow for a more complex hidden mapping.

The number of IPs plays a crucial role in the DUE approach.
We experimented with multiple values ranging from 10 to
200 and found 50 to be the best-performing number. Note
that the number of IPs is interdependent on the batch size
and on the number of classes. Experimentally, we found a
batch size of 64 fitting for our layout. This is because a
larger batch size not only scales the computational effort
of a WRN exponentially but also requires more IPs, which has
a similar effect. The additional hyperparameters were chosen

as described in [19]. The predictive uncertainties for the SNGP
approaches are computed via the DSM and the maximum
softmax probability (see [19] for details). For the inducing
point (-IP) methods, we follow the original authors’ approach
and additionally use the predictive entropy of the softmax
vector [11]. Regarding the computational cost, we observed
an increased computational demand from the GP output layer
of roughly 1.3–1.5 times the demand of the core network
itself. Due to very fast convergence, the spectral (batch)
normalization has little to no effect on the computational cost.

IV. DISCUSSION

The performance gain of DUE over previous methods is
immediately visible in Table I: all combinations using the
Gaussian process with IPs (GP-IPs) beat previous baselines
by a large margin for the task of detecting OOD data within
the Eurosat dataset. Again, the DSM performs poorly, whereas
the other two uncertainty metrics achieve more or less similar
OOD detection results. Overall, the predictive entropy seems
to work best. Interestingly, SN seems to hinder the model
from effectively detecting OOD data, particularly for the
area under the precision recall curve (AUPR). Despite the
high value for c, the unrestricted hidden mapping performs
slightly better than the restricted one. On the other hand, the
data-driven spectral batch normalization has positive effects
on the performance in most settings.

For the So2Sat LCZ42 dataset, an overall higher OOD per-
formance can be observed, and the gap between the AUROC
and the AUPR has narrowed; see Table II. This can be partially
attributed to the larger size of the dataset. But, the more clear
class separation could potentially also play a role. Adding to
that, the patch size is only 25% of the size of the Eurosat
patches. Due to poor performance on the Eurosat dataset,
which lay far from the performance of the DUE approach,
we did not perform LCZ42 experiments for the original SNGP
approach. The balance between built-up and nonbuilt classes
is relatively even, which allowed us to perform the OOD
detection task in both ways. Interestingly, the detection of
built-up classes as OOD samples works a lot better than
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detecting nonbuilt classes when having seen only built-up
classes during training. Overall, the earlier findings regarding
spectral (batch) normalization can also be applied here.

In general, we achieve similar performance results as in [9]
for the LCZ42 dataset. Note, however, that the DUE approach
does not need any kind of OOD data during training. This
result is interesting, since the approach taken in [9] constructs
a framework that explicitly maximizes the loss toward OOD
data, and the framework incorporates OOD data for this max-
imization already during training. The approach of DUE [11]
and similar approaches, on the other hand, do not incorporate
this data. Instead, they design the network to automatically
map points further away, which lie further from the training
data in the input space. This design seems to work reasonably
well for land cover classification applications; we, therefore,
leave further exploration of this important model architecture
class for future research.

V. CONCLUSION

A model’s ability to express the uncertainty about its
prediction can be measured by means of OOD detec-
tion. Deterministic approaches with single forward passes
achieved superior performance on machine learning bench-
mark datasets. By constructing such a network architecture
to be distance-aware, unseen data points at test time are
automatically mapped further away from the training data.
This is then reflected by a higher uncertainty in the prediction.
The SNGP approach [10] performed very well with little
changes to the existing ResNets, and clear advantages of the
approach could be shown for the field of remote sensing image
classification [19]. Building upon the refined approach of [11],
we introduced spectral batch normalization and a GP output
layer, which is only realized on a limited number of IPs.

We then revisited the OOD detection task and showed strong
results over two land cover benchmark datasets. In particular,
for the Eurosat dataset, a performance gain in OOD detection
of more than 10% points was observed. Even higher perfor-
mance numbers were achieved on the So2Sat LCZ42 dataset.
Overall, the IPs approximation works more reliably than the
previous approximation using Laplace and RFF expansion.
We believe this is due to the flexibility provided by the non-
parametric properties of the GP and the reduced complexity
due to the limited amount of IPs. Similarly, the data-driven
spectral batch normalization shows more positive effects than
the plain SN. These results emphasize the effectiveness of the
proposed deterministic single forward pass uncertainty quan-
tification framework for remote sensing image classification.
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