elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

eXplainable artificial intelligence for automatic defect detection in additively manufactured parts using CT scan analysis

Bordekar, Harsh und Cersullo, Nicola und Brysch, Marco und Philipp, Jens und Hühne, Christian (2023) eXplainable artificial intelligence for automatic defect detection in additively manufactured parts using CT scan analysis. Journal of Intelligent Manufacturing. Springer Nature. doi: 10.1007/s10845-023-02272-4. ISSN 0956-5515.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
3MB

Offizielle URL: https://link.springer.com/article/10.1007/s10845-023-02272-4

Kurzfassung

Additive Manufacturing (AM) and in particular has gained significant attention due to its capability to produce complex geometries using various materials, resulting in cost and mass reduction per part. However, metal AM parts often contain internal defects inherent to the manufacturing process. Non-Destructive Testing (NDT), particularly Computed Tomography (CT), is commonly employed for defect analysis. Today adopted standard inspection techniques are costly and time-consuming, therefore an automatic approach is needed. This paper presents a novel eXplainable Artificial Intelligence (XAI) methodology for defect detection and characterization. To classify pixel data from CT images as pores or inclusions, the proposed method utilizes Support Vector Machine (SVM), a supervised machine learning algorithm, trained with an Area Under the Curve (AUC) of 0.94. Density-Based Spatial Clustering with the Application of Noise (DBSCAN) is subsequently applied to cluster the identified pixels into separate defects, and finally, a convex hull is employed to characterize the identified clusters based on their size and shape. The effectiveness of the methodology is evaluated on Ti6Al4V specimens, comparing the results obtained from manual inspection and the ML-based approach with the guidance of a domain expert. This work establishes a foundation for automated defect detection, highlighting the crucial role of XAI in ensuring trust in NDT, thereby offering new possibilities for the evaluation of AM components.

elib-URL des Eintrags:https://elib.dlr.de/201703/
Dokumentart:Zeitschriftenbeitrag
Titel:eXplainable artificial intelligence for automatic defect detection in additively manufactured parts using CT scan analysis
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bordekar, Harshharsh.bordekar (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Cersullo, NicolaTU BraunschweigNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Brysch, MarcoTU Braunschweighttps://orcid.org/0000-0003-0879-8283NICHT SPEZIFIZIERT
Philipp, JensTU BraunschweigNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hühne, ChristianDLR, TU Braunschweighttps://orcid.org/0000-0002-2218-1223149532027
Datum:23 Dezember 2023
Erschienen in:Journal of Intelligent Manufacturing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1007/s10845-023-02272-4
Verlag:Springer Nature
ISSN:0956-5515
Status:veröffentlicht
Stichwörter:Additive Manufacturing (AM) · Laser-Powder Bed Fusion (L-PBF) · Non Destructive Testing (NDT) · Computed Tomography (CT), Machine Learning (ML), EXplainable Artificial, Intelligence (XAI), Internal defects
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Komponenten und Systeme
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CS - Komponenten und Systeme
DLR - Teilgebiet (Projekt, Vorhaben):L - Strukturwerkstoffe und Bauweisen
Standort: Braunschweig
Institute & Einrichtungen:Institut für Systemleichtbau > Funktionsleichtbau
Hinterlegt von: Hühne, Prof. Dr. Christian
Hinterlegt am:28 Dez 2023 15:11
Letzte Änderung:03 Jan 2024 10:38

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.