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Abstract
Additive Manufacturing (AM) and in particular has gained significant attention due to its capability to produce complex
geometries using various materials, resulting in cost and mass reduction per part. However, metal AM parts often contain
internal defects inherent to the manufacturing process. Non-Destructive Testing (NDT), particularly Computed Tomography
(CT), is commonly employed for defect analysis. Today adopted standard inspection techniques are costly and time-consuming,
therefore an automatic approach is needed. This paper presents a novel eXplainable Artificial Intelligence (XAI) methodology
for defect detection and characterization. To classify pixel data from CT images as pores or inclusions, the proposed method
utilizes Support Vector Machine (SVM), a supervised machine learning algorithm, trained with an Area Under the Curve
(AUC) of 0.94. Density-Based Spatial Clustering with the Application of Noise (DBSCAN) is subsequently applied to cluster
the identified pixels into separate defects, and finally, a convex hull is employed to characterize the identified clusters based
on their size and shape. The effectiveness of the methodology is evaluated on Ti6Al4V specimens, comparing the results
obtained from manual inspection and the ML-based approach with the guidance of a domain expert. This work establishes
a foundation for automated defect detection, highlighting the crucial role of XAI in ensuring trust in NDT, thereby offering
new possibilities for the evaluation of AM components.

Keywords Additive Manufacturing (AM) · Laser-Powder Bed Fusion (L-PBF) · Non Destructive Testing (NDT) · Computed
Tomography (CT) · Machine Learning (ML) · EXplainable Artificial Intelligence (XAI) · Internal defects

Introduction

Additive Manufacturing (AM) techniques have attracted a
lot of attention in the last years due to the possibility to
create and produce complex geometries through an opti-
mized design approach. The possible mass and cost-saving
have made this technology highly competitive compared to
conventional manufacturing processes. In particular, Laser-
Powder Bed Fusion (L-PBF) with its rapid progress started
to open a potential market with new applications and parts
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in different fields such as aerospace and automotive (Gib-
son et al., 2021). Although the increased maturity of this
technology, the production process needs to be properly
mastered to avoid process-induced characteristics. Indeed,
despite extensive research and technological advancement,
internal defects may always occur (Yap et al., 2015). These
might be attributed to different causes: non-uniform powder,
slight changes in the process parameters with an effect on
the laser beam, scanning and building strategy, and defor-
mations during the manufacturing process are just a few
examples (Kasperovich et al., 2016; Yadollahi & Shamsaei,
2017). These factors may lead to a wide range of potential
defects. Among them, the main may be classified accord-
ing to their nature in inclusions, pores, and lack of fusions
(LoF). Inclusions are caused by foreign material while pores
and LoF are due to the process-related gas bubbles entrapped
during the solidification process of the melt pool and the low
melting power beam, respectively. The different defect types
may affect the overall part quality due to their impact on the
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mechanical properties (Greitemeier et al., 2017; Cersullo et
al., 2022). Today industries mainly define part acceptance
criteria according to their size, shape, or even distribution
pattern. In this framework, Non Destructive Testing (NDT)
is an essential step in the overall process chain to identify and
characterize the different defects. Among the various NDT
techniques (Koester et al., 2019), Computed Tomography
(CT) is commonly used for structural integrity investigations
(De Chiffre et al., 2014) and part certification (du Plessis et
al., 2018). The ability to inspect complex geometries and to
provide a 3D volumetric analysis of internal defects makes
CT more suitable for AM analysis compared to 2D X-ray
or ultrasonic techniques. It is worth mentioning that the use
of CT has been widely adopted in literature to improve the
understanding of the effect of specific defects on themechan-
ical properties (du Plessis et al., 2016; Gong et al., 2019) and
to identify inspection and qualification criteria for AM com-
ponents (Seifi et al., 2017, 2016).

In a CT scan, X-ray measurements of an object at differ-
ent rotating angles are taken to record the projection data.
Such projections are later used to construct a cross-sectional
image at multiple height levels using image reconstruction
algorithms (Seeram & Sil, 2013). The fully reconstructed
volumetric data can be stored as voxels, where the bright-
ness level of each voxel corresponds to the local penetration
depth of X-rays (or the material attenuation). A higher pen-
etration ability represents a darker spot in the corresponding
cross-sectional image or volumetric data set. Final data can
be viewed as a stack of 2D images in any plane. When this
sort of conversion from a 3D model to 2D image stacks hap-
pens, voxels are converted into pixels that maintain the same
characteristics in terms of value intensity and position. In
particular, the different brightness levels of the features in
the layer-wise gray-scale images can be used as a key indi-
cator to detect the different defects. As shown in Fig. 1, an
inclusion appears as a bright spot and similarly, pores are
visible as dark spots in a sufficiently high contrast compared
to the surrounding bulk material. It is worth mentioning that
LoF and pores are similar in terms of feature characteristics
due to their nature and for this reason from now on the term
pore will be used indistinctly to address both of them.

The CT scan analysis process still represents today a
time-consuming activity from both an inspection process
and an evaluation point of view. In particular, the latter usu-
ally requires a manual defects detection process through the
various scanned layers. This activity is usually performed
by technical experts in the domain who use dedicated soft-
ware to tune several visualization parameters for optimal
feature interpretation and recognition. Indeed, this brings
an inevitable user dependency data interpretation that may
cause a non-full match between data sets evaluated by dif-
ferent operators. In this optic, an automatic defect detection
tool might not only eliminate human interactions but also

reduce the inspection time obtaining a fully automatic con-
trol process with a consequent improvement in the overall
process chain and a reduction in the cost per part. Commer-
cial NDT analysis software provides an alternative to manual
inspection through different image processing and segmen-
tation tools. In most of the adopted methodologies, semantic
segmentation is done based on the brightness of the vox-
els to select an appropriate threshold that is used to binarize
the different images into the main foreground (usually repre-
sented by pores) and background (Gong et al., 2019). In this
way, voxels belonging to the different pores can be identified.
The threshold itself is customarily obtained fromwell-known
methods (Otsu, 1979) but itmay vary locally for different lay-
ers. The definition of an optimal threshold ismade by the user
within the evaluation software, which makes the result of the
analysis dependent on individual decisions and thus repro-
ducibility is limited. Moreover, it has to be pointed out that
CT scan artifacts such as beam hardening, scatter, Poisson
noise, and ringing effect may slightly change pixel intensities
(Boas & Fleischmann, 2012), affecting the efficiency of the
thresholding. To overcome some of these limitations and to
obtain a reliable analysis that is as far as possible indepen-
dent of individual decisions, the use of Machine Learning
(ML) algorithms for objects detection and automatic classi-
fication is constantly increasing (Spierings et al., 2011; Erhan
et al., 2014; Sadoon, 2021). In particular, to identify internal
defects numerous researchers followed different approaches.
Caggiano et al. (2019) proposed an ML-based online SLM
process monitoring routine to detect defects in an AM part.
Schlotterbeck et al. (2020) adopted a deep Artificial Neu-
ral Network (ANN) trained on human-annotated defects to
analyze 2D images of specimens at locations identified from
a Support Vector Machine (SVM) model. The ANN used
by the authors was trained on 30.000 samples and it was
labeled for different types of defects by experts. Mutiargo et
al. (2019) used instead an ANN known as U-NET to detect
porosity in AM-built samples; the pre-segmentation of the
training images was performed using the open-source soft-
ware Fiji (Schindelin et al., 2012). Those images were then
controlled and re-labeled by a human operator for the final
decision. The results from the ANN were post-processed to
determine the total porosity in the specimen, and compared
with results from Archimedes tests. Fuchs et al. (2019) used
the U-NET architecture to detect defects in aluminum cast-
ing parts; a total of 675 simulated CT scans with defects like
pores and shrinkage were used for training purposes. Fur-
thermore, three real CT scan data sets hand-labeled by eight
experts were used to check as the ground truth label. Gobert
et al. (2020) presented a methodology for automatic poros-
ity segmentation of X-ray images based on convolutional
neural networks in combination with OTSU thresholding.
Shipway et al. (2021) trained a CNN architecture known as
ResNet to perform automated defect detection in fluores-
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Fig. 1 A CT scan layer with a
pore (dark spot) and an
inclusion (bright spot)

cent penetration inspection. A visible spectrum camera was
used in Bacioiu et al. (2019) to capture 30008 images of
multiple welding runs. Such data was later used for train-
ing an ML model for automatic defect classification. Du Du
et al. (2019) used a deep learning approach to improve the
X-ray image defect detection of casting specimens. Simi-
larly, Torbati-Sarraf et al. (2021) used four different states of
art CNN models for semantic segmentation of a 3D Trans-
mission x-ray Microscopy (TXM) nano-tomography image
data. Recently, Wong et al. (2021) performed a 3D volumet-
ric segmentation using a 3D U-NET CNN architecture. In
their work, three variants of 3D U-NETs were trained and
tested on an AM specimen. The 3D U-NET achieved a mean
Intersection Of Union (IOU) score of 88.4%.

As observed by all the authors, the role of an expert is fun-
damental for building up a good training data set. Moreover
the choice of Convolutional Neural Networks (CNNs) comes
with certain challenges. Firstly, CNNs often demand substan-
tial amounts of data for effective training (Singh et al., 2020).
Secondly, these models are complex in nature, making them
challenging to explain or interpret (Linardatos et al., 2020).
In contrast, Support Vector Machines (SVMs) and Random
Forests (RFs) are more data-efficient, requiring compara-
tively smaller datasets to perform well (Vargas-Lopez et
al., 2021). Moreover, SVMs and RFs are known for their
transparency and interpretability. They provide clear deci-
sion boundaries and feature importances, making it easier
for humans to comprehend and trust their predictions.

Furthermore, the methods discussed are considerably
effective in the reckoning of the overall porosity level using
layer-wise 2D analysis. However, the 3D shape and size
characterization with the actual location identification of

every single defect requires additional effort. Moreover, all
of them suffer from low explainability and interpretability
as they tend towards deep learning techniques. In the con-
text of machine learning systems, interpretability refers to
the capacity to explain or present information in a way that
is understandable to humans (Samek & Müller, 2019). It
should provide insights into the decision-making process,
revealing the relationship between the input variables and the
corresponding outputs (Lundberg et al., 2020). On the other
hand, interpretability goes beyond solely obtaining accurate
predictions and instead focuses on comprehending the under-
lying factors andmechanisms employed by themodel. Under
the scope of NDT, interpretability plays a paramount role
to develop trust in the model and the overall methodology.
Indeed, by adopting such methodologies, understanding the
logic and the reasoning behind a particular decision becomes
a challenging activity. Several recent studies have actually
emphasized the need for an explainable and interpretable
AI (sub)systems model (Linardatos et al., 2020; Burkart &
Huber, 2021; Bussmann et al., 2020). In this framework,
the European Union Aviation Safety Agency (EASA) pub-
lished a guideline for level-1ML applications (Torens et al.,
2022). It is important to additionally underline that all state
of art deep learning techniques mentioned focus their atten-
tion mainly on pores, not taking into account the detection of
inclusions. Moreover, the bottleneck of training data require-
ment that comes with such methods represents an additional
constraint for their application.

To overcome the shortcomings of the state-of-the-art
methods, an eXplainableArtificial Intelligence (XAI) approach
for automatic detection and characterization was employed
in the present work. Moreover, the presented method also
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Table 1 CT scan setup parameters

X-ray beam parameter

UB [kV] 110

IR [μA] 110

P [W] 12.1

Detector settings

Timing [ms] 600

Average 3

Skip 2

Acquisition

Images 1441

Duration [min] 216:15 (multiscan)

Voxel [μm] 12.5

provides additional location and morphological information
regarding individual defects.

Materials andmethods

Data set

In the present work, three cylindrical Ti6Al4V specimens
were manufactured by L-PBF in a single build. Coupons
were subjected to a stress relief at 720°C after the print-
ing process, followed by an annealing procedure at 920°C
for 2 hours. Samples diameter and height were 11 mm and
90 mm, respectively. CT scan measurements were carried
out on the entire specimens through a phoenix “v-tome-x s
240” μ CT system by GE Sensing & Inspection Technolo-
gies GmbH (Wunstorf, Germany) with a 240 kV and 320
W microfocus tube enabling a theoretical detail detectabil-
ity < 1 μm. A tungsten target is used in this type of direct
X-ray tube for the generation of X-radiation with a usable
beam cone of approx. 25°. The 3D tomography system was
operating via “xs control” and “phoenix Datos-x acquisition
2.0” software (both GE Sensing & Inspection Technologies
GmbH). Reconstruction of the CT scan was performed using
phoenix “Datos-x reconstruction” software [39]. An overall
resolution of 12.5μm is achieved for all the analyzed sam-
ples. Further information regarding the CT scan parameters
adopted are shown in Table 1.

Two of the printed specimens were analyzed by a tech-
nical expert who manually identify and labeled both defects
and inclusions. The methodology adopted by the expert is
not part of the analysis and it is therefore not reported in the
context of the present work. Nevertheless, for the proposed
activity the results provided were considered acceptable in
terms of defects detection. The labeled data were used for
training (80%) and testing (20%) purposes. On the third

printed coupon, a complete 3D defects characterization was
performed. No evaluation of this latter sample was done a
priori. The final results from the selected model were then
validated by the same expert.

Machine learning framework for defect detection

The methodology proposed in this work may be divided into
two main steps (a schematic overview is provided in Fig. 2):

• Pixe-wise defect detection;
• Defect clustering and analysis.

CT scans were performed on the additively manufactured
specimens using appropriate scanning parameters to capture
internal details and defects. The CT scan data comprised a
series of layered images. A trained machine learning model
was employed to detect and classify pixels belonging to pores
and inclusions within the CT scan images. The model was
developed using layered images as input sequentially, and it
classified pixels based on their characteristics and features.
The pixels identified as pores and inclusions were extracted
from the CT scan images and used to generate a 3D point
cloud representation. This point cloud consisted of points
corresponding to the detected defects within the specimen.

A sophisticated spatial clustering technique, specifically
DBSCAN,was applied to the 3D point cloud to identify clus-
ters of pixels that were in close proximity to each other. The
clustering process effectively grouped pixels belonging to
the same defect, aiding in the localization and characteri-
zation of defects within the specimen. The identified defect
clusters were further analyzed to extract valuable informa-
tion about each defect. Parameters such as projected area,
projected length, and location of the defects were computed
and recorded. These parameters provided insights into the
size, shape, and distribution of the detected defects within
the additively manufactured specimen.

Overall, the methodology involved a sequential process
of CT scanning, machine learning-based pixel detection,
3D point cloud generation, DBSCAN clustering, and sub-
sequent defect analysis to extract key defect characteristics.
This approach enabled the automated detection and charac-
terization of internal defects in the additively manufactured
specimens, facilitating quality control and further analysis of
the AM components.

Defects detection using supervisedML
models

Traditional ML models require a feature extraction pipeline
to aid the learning process (Douglass, 2020). The training
features utilized in themodel consisted of the pixel intensities
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Fig. 2 A flow diagram describing the proposed methodology

from the original gray-scale image, along with the intensities
obtained after applying a Gaussian filter with a kernel size
of 3. This combined approach of considering both the actual
pixel intensities and the Gaussian filtered intensities aids the
model in recognizing and classifying pixels based not only
on their gray-scale intensity but also on the abrupt changes
in the surrounding gray-scale intensities. A data repository
comprised of hand-labeled images was assembled with the
help of an expert. All images containing key features were
cropped at a specific location from the labeled XY layer to
create the dataset. A few examples from the dataset adopted
are shown in Fig. 3. In particular, Fig. 3(a) shows the original
patches and Fig. 3(b) the ground truth labels. In the latter,
the black pixels represent the bulk of the material while the
white and the blue pixels represent the pore and the inclusion,
respectively.

Re-sampling of imbalance data set

In the realm of data mining and machine learning applica-
tions, it is uncommon to encounter datasets that are perfectly
balanced in their distribution. In a multi-class classification,
class imbalance occurs when one or more classes, represent-
ing the majority of the data instances, affect the capability
of the ML model to perform accurately. In an imbalanced
dataset, the majority class is called negative class and the
minority class is called positive class. ML model trained on
imbalance dataset are prone to be biased towards negative
class. Moreover, statistical evaluation techniques like Con-

fusion Matrix and F-1 Score do not provide a valuable result
for a skewed test dataset.

In the presented work the the skewness of the class dis-
tribution can be measured with the help of imbalance ratio
(IR), which can be measured for each class using the Eqn. 1.

IRspecific class = majority class

Specific minority class
(1)

The IR for pore and inclusion were 2.567 and 14.943
respectively. Therefore it was necessary to tackle this imbal-
ance in the dataset, before employing it for training and
testing.

Depending on the data type, several techniques were
implemented to tackle the class imbalance problem (Zhu et
al., 2019;Du et al., 2019; Shipway et al., 2021).Among them,
the data level technique is the most intuitive way to treat a
skewed dataset due to the fact that changes are made on the
actual imbalance data to convert it into a balanced dataset.
This is usually achieved by either oversampling the positive
class or down-sampling the negative class. However, a simple
over sampling with replacement improves the performance
of the ML model insignificantly (Bhagat & Patil, 2015). To
solve this issue, (Chawla et al., 2002) introduced an oversam-
pling technique known as SyntheticMinority Over-sampling
Technique (SMOTE). In SMOTE, the positive class is over-
sampled by introducing new random synthetic data instances
along the line-segment. This allows to join together the kth

nearest neighbour and the positive data instance in consider-
ation. The number of kth neighbours are selected on the basis
of the amount of oversampling needed. SMOTE generates a
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Fig. 3 a Original cropped
patches containing defects (pore
and inclusion) and b ground
truth for labeling (white for the
pore and blue for the inclusion)

new synthetic data instances by using the following equation
(Bhagat & Patil, 2015):

New(Xi ) = Xi + (X̂i − Xi ) ∗ δ (2)

where Xi is a data instance from the positive class, X̂i is kth

nearest neighbour of Xi , and δ is a random number between
[0, 1].

In the present work, the labelled data provided by the
expert were mainly unbalanced with the majority of the pix-
els analyzed falling in the back-ground and material classes.
Such skewed data may results in poor classification capacity
of the ML model. Moreover, an imbalanced testing dataset
may lead to untrustworthy results. For these reason, minor-
ity data classes (porosity and inclusion) were over-sampled
using SMOTE and a balanced dataset was adopted for train-
ing and testing. The value of k was chosen to be equal to 5, as
smaller value leads to the generation of very similar synthetic
data and higher value may lead to cross-over the boundary of

the class. The actual data distribution of the different classes
and the results from the SMOTE are shown in Fig.4.

Machine learningmodels

In the context of non-destructive testing (NDT), where
the cost of obtaining labeled data through CT scans and
the expertise required for data annotation can be substan-
tial, selecting suitable machine learning (ML) algorithms
becomes crucial. This study focuses on defect detection in
CT scans and aims to strike a balance between model perfor-
mance, data requirements, and interpretability. While more
sophisticated models like deep neural networks may offer
high accuracy, they often demand large amounts of labeled
data, which may not be feasible in NDT applications. Addi-
tionally, their lack of explainability raises concerns in critical
industries where interpretability is essential. To overcome
these challenges, a pragmatic approach is adopted by utiliz-
ing three supervised ML models to classify the pixel data
into the four different classes: Decision Tree (DT), Support
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Fig. 4 A depiction of Skewed data-set a and the Balanced data-set b using SMOTE

Vector Machines (SVM), and Random Forest (RF). A popu-
lar state of the art python library named sci-kit (Nelli, 2015)
was used to implement these models. They are known for
their simplicity, requiring less data for training, and offering
better interpretability. By leveraging these advantages, this
study aims to develop effective defect detectionmodels inCT
scans while considering the constraints of limited data avail-
ability, high CT scan costs, and the need for explainability in
NDT applications.

DT is a non-probabilistic classifier used to distinguish
between classes of a given data (Douglass, 2020). The data
obtained from the feature extraction pipeline of the cropped
images with their labels are fed into the root node of the
DT model as shown in Fig. 5. A random search optimization
technique was used to obtain the optimal hyper-parameters
to get the maximum gain at each level (entropy criterion is
here adopted).

SVM, here used for pixels classification, is inherently a
binary classifier (Douglass, 2020). In the present work, one
vs all approach is used to train the SVM model to predict
the class of the pixels. Hyper-parameters of the SVM model
like ’C’ and ’gamma’ was tuned using k-folds methods with
radial bias kernel.

RF algorithm works on the concept of ensemble learning.
Multiple decision trees are employed to predict the class of
the random batches of the training data set. The average of all
the votes from different DTs is used as a final class. Hyper-
parameters such as the number of trees, depth of trees and
minimum data instances to split the node are tuned using
a grid search method (Syarif et al., 2016) with predefined
design space.

Once themodels are trained, for each input cross-sectional
image (see Fig. 6(a)) a label vector is obtained as output.
This is concatenated and used to create an RGB image. The
predicted results from DT, SVM and RF are depicted in Fig.
6(b), (c) and (d), respectively. The RGB image is constructed
to provide visual aid for the user to identify the defect from the
bulk. Information regarding different defects such as pores
and inclusions are stored into different channels of an RGB
image leading to a better binarization. This provides further
information such as defect size and location.

Results and discussion

Testing and evaluation of MLmodels

To evaluate the different ML models, the trained algorithms
are used to predict the class of the selected testing dataset.
Predictions are then compared with the ground truth labels
provided by the expert. Well knows evaluation metrics such
as precision, recall and F1-score are used to assess the perfor-
mance of the differentMLmodels.Moreover,metrics such as
ReceiverOperator Characteristics (ROC) andAreaUnder the
Curve (AUC) were employed to calculate the performance
of the ML models for a specific class. Finally, Intersection
of Union (IoU), also known as Jaccard index, was applied to
check the segmentation capability of the different algorithms.

Confusion matrix and derived units

Predicted results fromMLmodels are comparedwith ground
truth labels provided by the expert. Instances from this
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Fig. 5 Illustration of the trained Decision Tree model

Fig. 6 Results from the trained
ML models: a Original
cross-sectional CT image and
the classification result from DT
b, SVM c and RF d

comparison are categorized according to four classes: true
positive (TP), true negative (TN), false positive (FP) and
false negative (FN). These classes are later used to construct
a ConfusionMatrix (CM) such that all the rows represent the
actual class and the columns describe the predicted class. An
example of a CM for a binary class classification is shown in
Fig. 7.

The FP and FN errors represent the type - 1 and type
- 2 errors in statistics, respectively. A CM for multi-class
classification can also be used to evaluate the performance
of the models as in Fig. 8. In a typical CM, a strong diagonal
is favourable suggesting the better performance of the trained

Fig. 7 CM for a binary class classification result

ML model on the test dataset. In Fig. 8, elements of CM are
normalized between 1 and 0, where 1 represents 100% of the
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Fig. 8 CM of all the trained ML models: a DT, b RF and c SVM

testing instances of that particular class. The off-diagonal
values represents the miss-classified data instances.

It has to be pointed out that the CM cannot be used as an
absolute metric to compare the performance of the trained
models. Indeed, different metrics obtained from the elements
of the confusion matrix, such as precision, recall and F1-
Score (Fawcett, 2006), were adopted:

Precision = T P

T P + FP
(3)

Recall = T P

T P + FN
(4)

F1 − Score = 2 ∗ Precision ∗ Recall

Precision + Recall
(5)

TP, FP and FN here represent the instances in the evalua-
tion of the testing data set.

The abovemetrics focus on different aspects of themodel.
The Precision metric emphasises more the true detection of
each class, neglecting the effect of false detection (the maxi-
mum score value of 94.4%was achieved by the SVMmodel).
Relying only on precision may lead to a model which is
biased toward positive detection. On the other hand, Recall
measures the result by emphasising on negative instances;
SVM performed marginally better than all the other mod-
els by obtaining a score of 94.9%. Nevertheless, to obtain a
balanced evaluation of the trained model both positive and
negative detection are equally important. Therefore, F1-score
was also adopted. This represents a harmonic mean of Preci-
sion and Recall providing more weight to lower value out of
the twometrics. The maximum F1-score was obtained by the
SVM model with a value of 94%. The macro average of all
the metrics for all the three ML models are shown in Table
2.

Receiver operator characteristics curve

The derivedmetrics from the CMprovide an average value of
the performance of the different models in all the predicted
classes. However, it is also essential to have an indicator
of the performances in each of them, especially for pores
and inclusions. Therefore, to have a performance indica-
tor in each individual classes, ROC curve was employed.
The ROC allows to obtain a visual representation of the ML
model’s trade-off between correctly predicted positive sam-
ples and falsely predicted negative samples. Traditionally,
a ROC curve assessment is a strategy to assess the perfor-
mance of a binary ML classification model but it can be used
for multi-class classification problems using the one vs all
approach. For comparing the performances of all the models
using ROC, Area Under the Curve (AUC) was used. Fig. 9
depicts the ROC and AUC of the three models on the test
dataset for inclusion and pore classes.

As shown in Fig. 9(a), SVM and RF performs better than
the DT model in the Pore class with a similar AUC of 0.89.
Fig. 9(b) shows the exceptional performance of all the mod-
els in the Inclusion class due to a balanced test dataset. It
can be concluded that the Inclusion detection is a relatively
trivial task for a well trained model, as the contrast between
inclusion and the rest of the classes is substantial.

Jaccard index

In the evaluation of standardMLmodels, predictions are cus-
tomarily graded using statistical evaluation techniques such
as CM, F1-score and ROC. However, for the evaluation of
the image segmentation task, Intersection of Unions (IoU),
aka Jaccard index, provides better insight. IoU is obtained
from the ratio of the number of pixels in common between
ground truth and predicted region by the total numbers of
pixels present across both regions (Shi et al., 2014). In the
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Fig. 9 ROC curve and AUC of the different ML models for a Pore and b Inclusion class

Table 2 Models performances from the testing evaluation data adopted

Precision [%] Recall [%] F1-score [%] AUC IoU

SVM 94.4 94.9 94.4 0.94 0.97

DT 86.6 86.7 85.8 0.87 0.71

RF 93.7 93.7 93.7 0.94 0.82

present work, the ground truth images (see Fig. 10(b)) for
the original patch (see Fig. 10(a)) provided by the expert are
overlapped with the predicted results (see Fig. 10(c)) from
the trained ML model. The Jaccard index score ranges from
0 to 1, where 1 represents a perfect match. For each model,
the mean Jaccard index score of selected patches comprising
both inclusions and pores is shown in Table 2.

Results suggest that the SVM model performs slightly
better thanDT andRF in all the evaluatedmetrics. Therefore,
SVM was adopted to characterize the CT scan data of the
third 3D-printed specimen.

Model explainability

Despite the exponential growth in the utilization of ML
methodologies across diverse domains, they still possess
a black box nature. Utilizing different post-hoc evaluation
methods such as statistical analysis with confusion matrix,
ROC and AUCmetrics, feature importance analysis together
with partial dependency plots can contribute towards improv-
ing a sense of confidence in the user. Indeed, ML models
play a role in making crucial decisions, often in sensitive
contexts. In order to effectively integrate them into critical

applications, establishing a trust factor with users becomes
paramount. Such factors can be differentiated into two differ-
ent but related aspects: prediction trusting andmodel trusting.
Ribeiro et al. (2016) proposed a method to assert both of the
trust aspects for a user.

ExplainableArtificial Intelligence (XAI) aimed to improve
the transparency, interpretability, and understandability of
machine learning models for building trust in AI systems
and ensuring that AI-driven decisions can be explained and
justified. There are several methods one can use to tackle
the explainability of the ML model depending on the type of
explaination, type of data, and type of ML algorithm used.

SHAP (SHapleyAdditive exPlanations)(Lundberg&Lee,
2017) is a powerful and versatile framework for explaining
the predictions of machine learning models. It provides a
way to understand the contributions of individual features
to model predictions, helping to interpret and debug com-
plex models. However the computational cost of the SHAP
increases exponentially with respect to the amount of data
used to training and testing purposes.

Permutation Feature Importance is a technique used to
assess the importance of individual features in a machine
learningmodel. It provides insights into howmuch amodel’s
performance would affects if the values of a specific feature
were randomly shuffled while keeping other features same.
In Teufl et al. (2021), authors have used Permutation feature
importance method for gait kinematics analysis.

Permutation Feature Importance is quick and simple how-
ever, it provides limited insights. On the other, SHAP offers
comprehensive explanations but can be computationally
expensive. Therefore to strike a balance between the com-
plexity and depth of the in-sight in the explanation, Local
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Fig. 10 A few examples of original cropped data a, ground truth b and predicted results c used to calculate IoU

Fig. 11 A graphical
representation for a prediction
using LIME’s glass surrogate
model. A complex model[red
line] is explained locally with
LIME glass models using
synthetic vicinity data points

Interpretable Model-agnostic Explanation (LIME) method
was used

LIME is a technique used to provide explanations for indi-
vidual predictions made bymachine learning models. It aims
to address the “black box” nature of many complex models
by offering insights into ’how the model arrives at a specific
prediction?’.

When it comes to “Trusting a prediction,” LIME provides
a local explanation for an individual instance by identify-

ing the features in the input data that are most influential
in determining the prediction outcome. LIME achieves this
by generating a simplified and interpretable (glass) model,
such as linear regression, to approximate the behavior of the
complex model locally in the vicinity of the instance of inter-
est (see Fig. 11). By examining the coefficients or rules of
this simplified model, we gain insights into which features
played a significant role in the prediction. This explanation
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helps users understand why a particular prediction was made
and builds trust in the decision.

Additionally, LIME can also be utilized for “Trusting
a model” by selecting multiple predictions and generat-
ing explanations for them. By analyzing multiple instances,
LIMEprovides an overview of themodel’s behavior and gen-
eral decision-making patterns. This allows the user to identify
any possible biases which results in a better-performing and
robust model helping the user to make informed decisions.

The basic idea of LIME is to identify a glass model over
the interpretable representation, which is locally faithful to
the black box model under consideration. LIME provides an
explanation for a glass box that may not be able to approx-
imate the black box model globally but in the vicinity of an
individual data instance from the test dataset. The explanation
produced by LIME is obtained by minimizing the function
ξ(x).

ξ(x) = argmingεGL( f , g, πx ) + �(g) (6)

Where G is a set of glass models replicating the black
box ML model f and g is an individual glass model from
G locally faithful to f in the vicinity πx of the data instance
x . �(g) represents the penalty for the complexity of the
model g. Minimizing this function results in the generation
of locally interpretable glass box models that approximate
the behavior of black box models for a given vicinity point.

An individual LIME evaluation for a data instance from
the testing dataset is shown in Fig. 12. The figure provides
qualitative reasoning for a particular decision using a set of
conditions to classify a pixel into respective classes. It can be
inferred that the LIME glass model has successfully learned
a few thresholds for every data class. As in Fig. 12(a), pixels
with a grayscale intensity less than or equal to 68, are more
likely to fall into the pore class. It also provides a sense of con-
fidence by providing weight for each feature that contributes
towards the prediction. Similarly, Fig. 12 shows the related
feature contribution with their weights for all the classes.
Such evaluation helps to ensure the “Trusting a prediction”
factor.

By utilizing LIME to generate local explanations for
multiple instances, users can assess the consistency and reli-
ability of these explanations across multiple data points.
When the explanations consistently align with their domain
knowledge and expectations, it serves as evidence support-
ing the model’s reliability in making accurate predictions.
Through an examination of numerous instances and their
corresponding explanations, users can establish "Trusting a
model" factor. Ultimately, the transparency and interpretabil-
ity provided by LIME’s local explanations help users tomake
well-informed judgments regarding the model’s overall per-
formance and instill confidence in its predictions.

LIME employs an additive approach to build indirect
global explanations by accumulating trust across various
samples. However, it is important to note that LIME has
limitations. One such limitation is its scalability, as higher-
dimensional data can lead to increased computational costs,
making it challenging to generate explanations efficiently.
Furthermore, LIME is susceptible to sample dependence,
where in different samples may yield varying explanations,
adding uncertainty to the interpretability process.

Clustering process and defects
characterization

TheMLmodel classifies all the pixels according to the defect
classes (pores and inclusions). However, it is necessary to
cluster the different pixels into their respective defects. To
do that, un-supervised ML techniques were adopted.

2D defect clustering

The layer-wise results obtained from the SVM model are
subjected to cluster analysis using K-Means to identify dis-
tinct clusters for individual defects. This analysis utilizes the
Euclideandistancemetric to systematically separate different
defects.WhileK-Means typically requires the predetermined
number of clusters (K), this information can be determined
using clustering qualitymeasures such as the silhouette score.
By leveraging these measures, the appropriate number of
clusters can be determined to facilitate an effective cluster-
ing process.

As an example, results for a specific layer consisting of
multiple defects are analyzed and shown in Fig. 13. The pix-
els classified as pores in a specific layer, are clustered into
distinct defects using K-means and silhouette score. Fig.
13(a) depicts the original gray scale image with four dis-
tinct pores. All the pixels are classified using SVM and the
locations and number of all the pixels classified as pores
are later analysed by K-means. The silhouette score analysis
suggesting four distinct clusters aid the K-mean algorithm
to determine the optimal value of ’K’ to cluster the pixels
into distinct defects (see Fig. 13(c)). Each distinct cluster
may later be used to obtain information regarding individual
defects in the specific layer such as location (see Fig. 13(b)
with cross-hair as the center), size and shape characteristics
(Montero & Bribiesca, 2009).

The aforementioned layer-wise evaluation canbe extended
to a 3Dcluster analysis.However, in higher dimensional data,
the accuracy of the K-Means can suffer poorly as the spheric-
ity of the clusters decreases. Moreover, the presence of any
outlier may affect the cluster quality, and this may result
in merging multiple defects and the outliers into a single
defect. The clustering metric ”k” can be obtained using the
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Fig. 12 A graphical
representation for a prediction
using LIME’s glass surrogate
model

silhouette score method for a range of potential defects. Nev-
ertheless, the information regarding such a range of defects
in a scanned volume must be known a priori. A faulty range
of clustering metrics can yield poor clustering results. To
obtain a complete 3D description of the defects and to over-
come the mentioned limitations in the K-Means application,
a sophisticated unsupervised ML method is used.

3D defect clustering

For 3D defects evaluation, layer-wise pixel data are stacked
on top of each other in the build direction to construct a
3D point cloud with all the identified pixels in the complete
scan volume. To analyze such point cloud, a more sophis-
ticated unsupervised ML model known as Density-Based
Spatial Clustering with Application of Noise (DBSCAN)
(Ester et al., 1996; Liu et al., 2007) is used with a clustering
score of 0.73. Representative-based clustering methods like
K-Means are suitable for finding spherical and ellipsoidal-
shaped clusters. However, when it comes to arbitrary-shaped
clusters, density-based techniques are more efficient. Fur-

ther, K-means clustering can lead to misleading results when
it comes to identifying defects, as it tends to incorrectly clus-
ter noise pixels with actual defects. Consequently, this can
introduce inaccuracies in the derived morphological infor-
mation associated with the defects. Therefore DBSCAN is
later used to evaluate the 3D defects.

DBSCAN is a density-based un-supervisedML technique
which uses the local density of the points to determine the
clusters rather than using only the distance between them.
DBSCAN include the use of two hyperparameters: Eps and
minPts. These parameters are used to divide the dataset into
three categories: (a) core point, (b) border point, and (c) out-
lier. A point is said to be a core if there are at least a MinPts
number of data points within its Eps radius. A border point is
defined such that it is reachable from a core point, but do not
have MinPts number of point within its Eps radius. Finally,
a point is said to be an outlier if it is neither reachable from a
core point nor it has MinPts number of points within its Eps
radius.

The optimal Eps for a dataset can be obtain from the 3rd
nearest neighbor plot for all the data points (Liu et al., 2007).
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Fig. 13 Results from
unsupervised ML model: a
original image from the CT
scan, b defect pixels clustered
using Kmeans (the different
pixels group with their cluster
center are highlighted) and c
silhouette score for the number
of clusters determination

Figure 14 suggests that the 3D point cloud data for the pixels
in the Pore class have one densitywhich can be obtained from
the elbow point of the curve. TheminPts parameter valuewas
chosen higher than three times the size of the voxel adopted
in the CT scan to eliminate possible noises.

Thanks toDBSCAN, 3Dpoint clouds can be clustered into
distinct defects. Moreover, groups of data points or pixels,
which cannot be clustered due to selected hyper-parameters
are classified as noise. For instance, several CT artifacts like
streaks and beam hardening may result in a sudden change
in intensities for a small region of pixels and therefore they
are also classified as outliers.

Defect characterization

Defects clustered using DBSCAN may be analyzed individ-
ually to characterize their location, size and shape. All the
identified defects in the scanned volume are shown in Fig.
15(a). To analyze each defect individually and to build up a
surface mesh, convex hull was adopted (see Fig. 15(b)).

The application of the convex hull facilitates the evalua-
tion of directional dependent size such as the projected area

Fig. 14 Elbow point for optimal Eps parameter using 3rd K-nearest
neighbor for the specimen not used in the training and testing process

of the defect onto all three primary planes (see Fig. 16(a)).
Similarly, projected length,which is the projection of a defect
onto primary axes, can be calculated for every single defect
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Fig. 15 Result form 3D
clustering using DBSCAN: a
defects detected in the complete
scan volume, b individual defect
analyzed by Convex hull

(see Fig. 16(b)). Other morphological characteristics of the
defects, such as surface area and volume can also be obtained;
this provides a crucial aspect for the 3D defect shape charac-
terization such as sphericity and compactness of the defect.

Each of the clusters defined by DBSCAN can be traced
back to the corresponding layers in the original CT scan
image data. In Fig. 17, a feworiginal croppedCT scan images
are shown containing a small section of the same defects
in multiple layers together with the results obtained by the
automatic ML detection tool. For completeness, the defect
defined using DBSCAN is also shown.

Conclusion and outlook

The paper presents a novel methodology for automatically
detecting and analyzing internal defects in CT scan data of
additive manufacturing (AM) components. Key points and
findings from the paper can be summarized as follows:

• Existing methodologies for defect detection in CT scan
data are discussed, highlighting their limitations;

• Three traditional machine learning (ML) models were
trained and developed using an explainable AI (XAI)
framework, utilizing popular Python libraries such as sci-
kit learn and LIME;

• The trained XAI models were evaluated using various
ML model evaluation techniques, including confusion
matrix, precision, recall, F-1 Score, and ROC curve anal-
ysis with AUC;

• The segmentation quality of the best-performing model
was evaluated using the Jaccard index, a traditional seg-
mentation evaluation technique;

• A sophisticated spatial clustering technique (DBSCAN)
was employed to cluster 3D point clouds of defects in the
scanned volume;

• A methodology was proposed to analyze the results
obtained from the unsupervised ML technique, provid-
ing information such as defect location, size, projected
areas, and lengths onto primary planes and axes.

It is worth noting that the tool’s sensitivity in detect-
ing minimum defect sizes depends on the resolution of the
CT scan used. Future research will be dedicated to ana-
lyzing different materials and CT conditions in trying to
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Fig. 16 Schematic representation of the projected area evaluation by convex hull a and the projected lengths for a single defect into primary
axes b

Fig. 17 Cropped patches of multiple CT scan layers showing several sections of the same defect a and the prediction obtained by the ML algorithm
b. The complete defect in a 3D space is shown for completeness c

enlarge the database adopted. Indeed, the predictions of the
trained model may be influenced when applied to materi-
als with different compositions than those learned during
the training. The X-ray absorption characteristics of various
materials contribute to the gray-scale intensities of pixels
in the recorded data. Moreover, variations in CT machine
parameters, such as beam parameters, can lead to differences
in the absorption rates, thereby resulting in varyinggray-scale
intensities of pixels.

The proposed methodology establishes a groundwork for
automatic defect detection in AM components, highlighting
the use ofXAIs and providing guidelines forML certification
in CT analysis. The defect detection tool could be a valid sup-
port to enable the development of online process monitoring

tools by comparing the obtained results with sensor data
recorded during the printing. Overall, the proposed method-
ology shows promising results for enhancingAMcomponent
quality control.
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