Iqbal, M. Amjed and Anghel, Andrei and Datcu, Mihai (2022) Coastline Extraction From SAR Data Using Doppler Centroid Images. IEEE Geoscience and Remote Sensing Letters, 19, e1506205. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2022.3214496. ISSN 1545-598X.
PDF
- Published version
2MB |
Official URL: https://ieeexplore.ieee.org/document/9919186
Abstract
Coastline extraction by exploiting optical images is challenging during adverse weather conditions. This letter proposes coastline extraction from synthetic aperture radar (SAR) data. Since collecting in-situ data is expensive and not always possible, the Doppler parameter is used to delineate coastlines when neither in-situ data nor cloud-free optical images are available. We propose a novel coastline extraction method based on classic coastal dynamic variation, such as Doppler centroid ( fDC ), since the coastline is static and has zero Doppler with respect to the dynamic sea-state. The results of the Doppler-based novel technique allow us to investigate the impact of natural hazards on coastline degradation. We compare the proposed method to state-of-the-art (SOA) coastline extraction methods based on polarimetric correlations and the reference method from Sentinel-2. The results show that using scattering from dual and cross-polarization for coastline extraction is more reliable than using co-polarization. Based on empirical distributions and using the constant false alarm rate (CFAR) method, the relevant threshold has been adapted to distinguish land and sea in an unsupervised manner. We compare the results of polarimetric and Sentinel-2 with Doppler-based coastline extraction, which emphasizes the accuracy of the proposed fDC method for extracting coastlines at full resolution.
Item URL in elib: | https://elib.dlr.de/201631/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | Coastline Extraction From SAR Data Using Doppler Centroid Images | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | October 2022 | ||||||||||||||||
Journal or Publication Title: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | 19 | ||||||||||||||||
DOI: | 10.1109/LGRS.2022.3214496 | ||||||||||||||||
Page Range: | e1506205 | ||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Coastline extraction, constant false alarm rate (CFAR), Doppler parameters, polarization, synthetic aperture radar (SAR) | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Dumitru, Corneliu Octavian | ||||||||||||||||
Deposited On: | 11 Jan 2024 10:50 | ||||||||||||||||
Last Modified: | 15 Jan 2024 08:50 |
Repository Staff Only: item control page