elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A CNN-Based Sentinel-2 Image Super-Resolution Method Using Multiobjective Training

Vasilescu, Vlad und Datcu, Mihai und Faur, D. (2023) A CNN-Based Sentinel-2 Image Super-Resolution Method Using Multiobjective Training. IEEE Transactions on Geoscience and Remote Sensing, 61, e4700314. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2023.3240296. ISSN 0196-2892.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
13MB

Offizielle URL: https://ieeexplore.ieee.org/document/10026840

Kurzfassung

Deep learning methods have become ubiquitous tools in many Earth observation applications, delivering state-of-the-art results while proving to generalize for a variety of scenarios. One such domain concerns the Sentinel-2 (S2) satellite mission, which provides multispectral images in the form of 13 spectral bands, captured at three different spatial resolutions: 10, 20, and 60 m. This research aims to provide a super-resolution mechanism based on fully convolutional neural networks (CNNs) for upsampling the low-resolution (LR) spectral bands of S2 up to 10-m spatial resolution. Our approach is centered on attaining good performance with respect to two main properties: consistency and synthesis. While the synthesis evaluation, also known as Wald’s protocol, has spoken for the performance of almost all previously introduced methods, the consistency property has been overlooked as a viable evaluation procedure. Recently introduced techniques make use of sensor’s modulation transfer function (MTF) to learn an approximate inverse mapping from LR to high-resolution images, which is on a direct path for achieving a good consistency value. To this end, we propose a multiobjective loss for training our architectures, including an MTF-based mechanism, a direct input–output mapping using synthetically degraded data, along with direct similarity measures between high-frequency details from already available 10-m bands, and super-resolved images. Experiments indicate that our method is able to achieve a good tradeoff between consistency and synthesis properties, along with competitive visual quality results.

elib-URL des Eintrags:https://elib.dlr.de/201630/
Dokumentart:Zeitschriftenbeitrag
Titel:A CNN-Based Sentinel-2 Image Super-Resolution Method Using Multiobjective Training
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Vasilescu, VladNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datcu, MihaiMihai.Datcu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Faur, D.University Politehnica BucharestNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Januar 2023
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:61
DOI:10.1109/TGRS.2023.3240296
Seitenbereich:e4700314
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Consistency, convolutional neural networks (CNNs), Sentinel-2 (S2), super-resolution, synthesis
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Dumitru, Corneliu Octavian
Hinterlegt am:11 Jan 2024 10:48
Letzte Änderung:15 Jan 2024 08:51

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.