Vasilescu, Vlad und Datcu, Mihai und Faur, D. (2023) A CNN-Based Sentinel-2 Image Super-Resolution Method Using Multiobjective Training. IEEE Transactions on Geoscience and Remote Sensing, 61, e4700314. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2023.3240296. ISSN 0196-2892.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
13MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10026840
Kurzfassung
Deep learning methods have become ubiquitous tools in many Earth observation applications, delivering state-of-the-art results while proving to generalize for a variety of scenarios. One such domain concerns the Sentinel-2 (S2) satellite mission, which provides multispectral images in the form of 13 spectral bands, captured at three different spatial resolutions: 10, 20, and 60 m. This research aims to provide a super-resolution mechanism based on fully convolutional neural networks (CNNs) for upsampling the low-resolution (LR) spectral bands of S2 up to 10-m spatial resolution. Our approach is centered on attaining good performance with respect to two main properties: consistency and synthesis. While the synthesis evaluation, also known as Wald’s protocol, has spoken for the performance of almost all previously introduced methods, the consistency property has been overlooked as a viable evaluation procedure. Recently introduced techniques make use of sensor’s modulation transfer function (MTF) to learn an approximate inverse mapping from LR to high-resolution images, which is on a direct path for achieving a good consistency value. To this end, we propose a multiobjective loss for training our architectures, including an MTF-based mechanism, a direct input–output mapping using synthetically degraded data, along with direct similarity measures between high-frequency details from already available 10-m bands, and super-resolved images. Experiments indicate that our method is able to achieve a good tradeoff between consistency and synthesis properties, along with competitive visual quality results.
| elib-URL des Eintrags: | https://elib.dlr.de/201630/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
| Titel: | A CNN-Based Sentinel-2 Image Super-Resolution Method Using Multiobjective Training | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | Januar 2023 | ||||||||||||||||
| Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||
| Band: | 61 | ||||||||||||||||
| DOI: | 10.1109/TGRS.2023.3240296 | ||||||||||||||||
| Seitenbereich: | e4700314 | ||||||||||||||||
| Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
| ISSN: | 0196-2892 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Consistency, convolutional neural networks (CNNs), Sentinel-2 (S2), super-resolution, synthesis | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
| Hinterlegt von: | Dumitru, Corneliu Octavian | ||||||||||||||||
| Hinterlegt am: | 11 Jan 2024 10:48 | ||||||||||||||||
| Letzte Änderung: | 15 Jan 2024 08:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags