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Abstract— Deep learning methods have become ubiquitous
tools in many Earth observation applications, delivering state-
of-the-art results while proving to generalize for a variety of
scenarios. One such domain concerns the Sentinel-2 (S2) satellite
mission, which provides multispectral images in the form of
13 spectral bands, captured at three different spatial resolutions:
10, 20, and 60 m. This research aims to provide a super-resolution
mechanism based on fully convolutional neural networks (CNNs)
for upsampling the low-resolution (LR) spectral bands of S2 up
to 10-m spatial resolution. Our approach is centered on attaining
good performance with respect to two main properties: consis-
tency and synthesis. While the synthesis evaluation, also known
as Wald’s protocol, has spoken for the performance of almost all
previously introduced methods, the consistency property has been
overlooked as a viable evaluation procedure. Recently introduced
techniques make use of sensor’s modulation transfer function
(MTF) to learn an approximate inverse mapping from LR to
high-resolution images, which is on a direct path for achieving a
good consistency value. To this end, we propose a multiobjective
loss for training our architectures, including an MTF-based
mechanism, a direct input–output mapping using synthetically
degraded data, along with direct similarity measures between
high-frequency details from already available 10-m bands, and
super-resolved images. Experiments indicate that our method is
able to achieve a good tradeoff between consistency and synthesis
properties, along with competitive visual quality results.

Index Terms— Consistency, convolutional neural networks
(CNNs), Sentinel-2 (S2), super-resolution, synthesis.

I. INTRODUCTION

THE Sentinel-2 (S2) satellite mission consists of a con-
stellation of two identical satellites (Sentinel-2A and

Sentinel-2B) designed to operate simultaneously for contin-
uous environment monitoring with a high revisit frequency.
Accurate monitoring is possible due to their multispectral
instrument (MSI), which delivers multispectral images in the
form of 13 bands, with different spectral profiles, acquired
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at three different spatial resolutions—10 m (B2, B3, B4,
and B8), 20 m (B5, B7, B7, B8a, B11, and B12), and
60 m (B1, B9, and B10). S2 data come in the form of tiles
spanning an approximate area of 100 × 100 km and can be
downloaded for free from Copernicus Services Data Hub.1

The various utilizations for such multispectral information
include monitoring natural disasters, agricultural production,
and deforestation oversight. However, the level of details is
limited due to the lack of high-resolution (HR) profiles for
20- and 60-m bands, which narrows down the quality of some
spectral indices used for evaluating and estimating application-
specific characteristics. This motivates the development of
methods for constructing HR bands that enclose the physical
characteristics (light reflectance value distribution) of low-
resolution (LR) bands while increasing the number of details
in the spatial domain up to the maximum spatial resolution
available in the current dataset.

Image fusion has maintained a popular position in Earth
observation applications, serving a central role in moni-
toring the evolution of different environmental areas [1].
One such class of methods concerns multispectral image
fusion [2], [3], which combines information from various mul-
tispectral images in order to increase the level of details
in LR images. Approaches included in this category have
shown applicability in super-resolving all LR S2 bands up
to 10-m ground sampling distance (GSD). Applications that
could benefit from a full set of HR images include time
series evaluation of crop fields [4], [5], deforestation mon-
itoring [6], ship detection and recognition [7], and so on.
Recently proposed methods include model-based approaches,
constructed as inverse problems that include a degradation
process applied on the super-resolved bands, and machine
learning-based methods, which directly combine the HR and
LR bands to produce super-resolved images by exploiting
interband information.

Recent deep learning architectures, mainly convolutional
neural networks (CNNs), have imposed a great interest among
different Earth observation applications [8], [9], through their
ability of automatically learning complex spatial relationships.
S2 image super-resolution is one particular domain that bene-
fited from the power of representation of neural networks [10],
[11], [12]. A representative method for this class was intro-
duced in [13] as DSen2, in which the authors train two
separate networks for upsampling the 20- and 60-m bands,
both following a ResNet [14] architecture. The training process
is designed in a supervised manner, constructing a synthetic

1https://scihub.copernicus.eu/
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dataset by degrading the original bands, further considering as
input–output pairs the degraded-observed images. This method
has been shown to deliver competing results for a wide range
of environments, suggesting good generalization capabilities.
Other approaches rely on the use of GANs for generating HR
patches from the original LR bands [15], [16], [17], training
the generator network using a synthetic dataset, constructed in
the same degradation-based manner.

A subset of model-based approaches incorporate a down-
sampling mechanism that mimics the sensor’s modulation
transfer function (MTF). Such transformation should restore
a super-resolved image back to the originally observed one,
produced by the sensor. Area-to-point regression kriging
(ATPRK) [18] is a pansharpening technique originally tested
on WorldView-2 and Landsat images, subsequently adapted
for S2 super-resolution in [19]. In ATPRK, the super-resolved
band is modeled as a linear combination of HR bands, with
coefficients determined through least square minimization,
followed by an adaptive averaging of the regression residuals
for each pixel’s neighborhood. SupReME [20] is a method
that depends on the observation model of the imaging, i.e.,
the sensor’s MTF, and formulates the super-resolution process
as an inverse problem, exploiting the correlation between
spectral bands by projecting them onto a lower dimensional
space. S2Sharp [21] is an approach related to SupReME,
optimizing the same objective function while accounting for
interband correlations, but in this case, the low-dimensional
space is estimated for each optimization step, while in the
case of SupReME [20], it is defined beforehand for all steps.
Sen2res [22] is a method based on extracting the local infor-
mation from each LR band, i.e., reflectance values distribution,
and exploiting the high-frequency characteristics of HR bands.
The super-resolved patches are constructed as linear combi-
nations of subpixel constituents from HR bands, using least
square optimization for estimating the weighting coefficients.
Another technique, introduced as SSSS [23], also formulates
the super-resolution through the use of an MTF degradation
model, additionally incorporating convex regularization terms
intended for learning a self-similarity graph. This method has
been shown to exhibit solid results, especially for upsampling
the 60-m bands [24].

A more recent method introduced as S2SUCNN [25] com-
bines these two classes of techniques, training a CNN in an
unsupervised manner by introducing an MTF-based degra-
dation layer as their final processing step. Their method is
based on the idea of deep image prior [26], which provides a
solving mechanism for inverse problems, such as denoising,
inpainting, and super-resolution [27], [28], using neural net-
work structures to model a reliable inverse mapping through
standard gradient-based optimization, under a difference min-
imization objective.

He and Siu [29] applied Gaussian process regression
(GPR) for single-image super-resolution, by fitting such a
model on the local structures of each pixel and using a
two-stage process to recover and refine the super-resolved
image. Blix et al. [30], [31] utilized GPR for estimating
quad-polarimetric parameters from dual-polarimetric synthetic
aperture radar observations, providing insight by constructing

uncertainty maps through the fit GPR model, thus establishing
the level of trust in their predictions. S2 super-resolution could
therefore benefit on these aspects, providing a new way to
assess super-resolution results through measures indicated by
such uncertainty maps. This is, however, yet to become a
complete evaluation framework due to the difficulty of mod-
eling multiple response variables, as discussed in [32], which
for S2 super-resolution is a necessity when super-resolving
multiple LR bands at once. Another obstacle is represented by
the huge amount of input–output pairs a GPR model should
be optimized on, in order to provide good generalization
capabilities for different environmental areas.

In this article, we present a multiobjective training approach
for fully CNNs, aimed for ensuring a good tradeoff between
properties of consistency, synthesis, and enhanced visual
details of super-resolved S2 bands. Our contributions can be
summarized as follows.

1) We designed and implemented a super-resolution mech-
anism based on fully convolutional networks for upsam-
pling the 20- and 60-m bands of S2, except for band
B10 (we excluded band B10 from our study for two
reasons: it exhibits poor radiometric quality2 and it does
not contain relevant surface information, as it is mainly
used in applications dealing with cloud covered areas,
e.g., cirrus cloud detection).

2) We formulated a multiobjective training for the proposed
architectures, aimed at ensuring good super-resolution
results with respect to two properties of importance:
consistency and synthesis.

3) We included a direct similarity maximization term
between high-frequency information from already avail-
able 10-m bands and upsampled results for 20- and 60-m
bands, resulting in competitive visual results in terms of
detail authenticity.

The remaining of this article is organized as follows. Section II
presents the mathematical notations used throughout this arti-
cle, along with an in-depth discussion about the elements
implied by our method. Section III offers a view over
super-resolution evaluation protocols, providing intuition for
the adopted mechanisms in our method, and also their role
in assuring a high level of reliability. Section IV begins
with details regarding our method and a description for the
multiobjective training process, followed by Section V, which
includes discussions about various experimental results. The
concluding remarks are given in Section VI.

II. RELATED METHODS

A. Notations

Each S2 acquisition can be viewed as a 3-D tensor of
spectral bands, each with its own spatial dimensions and
spatial resolution. Let us denote the set of spectral bands
for one acquisition as {X10, X20, X60}, where Xr represents
the channelwise concatenation of spectral bands with spatial
resolution r . Considering each band from X10 to be of spatial
dimension H × W , the spatial dimensions of bands from

2Sentinel-2 L1C data quality report 2022.
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X20 and X60 are (H/2) × (W/2) and (H/6) × (W/6),
respectively. Xr (i, j) denotes the vector of reflectance values
from all spectral bands with spatial resolution r at location
(i, j). The spatial degradation (blurring + downsampling) by
a factor of s is denoted as (·) ↓s .

B. Deep Learning Methods

Deep learning methods have been extensively used as
stand-alone solutions for S2 super-resolution, fusing bands at
different spatial resolutions according to the process described
by various neural network architectures. Such computational
structures allow for obtaining the most representative abstract
features for the task at hand, without any prior knowledge on
the data acquisition process. However, these methods often
require large training sets for achieving good generalization
on unseen data, which is, by default, unachievable in certain
domains. Since there is no ground truth for the observed
60- and 20-m bands of S2 data, the majority of methods
based solely on neural network structures are trained on
synthetically constructed LR–HR image pairs, in a supervised
training paradigm. Given a neural network structure T (·), most
approaches learn the following mapping (either for ×2 or
×6 upsampling):

T (X10 ↓6, X20 ↓6, X60 ↓6) → X60 (1)
T (X10 ↓2, X20 ↓2) → X20. (2)

The optimized structure T (·) is subsequently used on real,
nonsynthetically degraded data.

One specific architecture recently used for super-resolving
S2 bands is that of conditional GANs [17], [33], which
trains the generator network by conditioning them on available
information to produce super-resolved bands intended to fool
a supposedly optimal discriminator network—optimal in that
it distinguishes as good as possible between real S2 bands
and bands produced by the generator. However, this type of
neural architecture was found out to be very hard to train
due to the necessity of finding an equilibrium state for the
min–max optimization problem, often resulting in suboptimal
final states, which leads to inconsistent super-resolved image
patches. Since the generated images are significantly depen-
dent on the ability of the discriminator to capture realistic
HR patterns when distinguishing between real and generated
images, the final image quality is tightly bounded by its
performance.

One emerging network architecture in the field of com-
puter vision, initially adopted by various natural language
processing applications, is represented by transformer models
[34]. Given the attention mechanism such models imply, they
are able to capture wider spatial relationships, however, with
the disadvantage that they require substantially more train-
ing than standard CNNs. One application in remote sensing
that leverages the attributes of transformers was discussed
in [35] for multi-image super-resolution of images provided
by PROBA-V satellite. To reduce the transformer necessity
for intensive training, the authors propose optimizing the
model for each input acquisition, eliminating the reliance on
a training dataset. Another super-resolution approach using

transformers for remote sensing applications is described
in [36], combining a CNN-based encoder with a transformer
model, the latter acting on embedded image patches.

C. MTF-Based Methods

These methods are based on computations that simulate the
sensor’s transfer function (MTF), planning the super-resolution
task as an inverse problem. Thus, for each LR image, a search
in the HR image space is performed, imposing that the
degraded HR solution should yield as close as possible to the
LR image. Usually, the degradation process is described as fol-
lows, for an observed image X and its unknown super-resolved
version Y ∈ RH×W :

X = Y ↓s= (Y ∗ gσ ) ∗ ds ∈ R
H
s ×

W
s (3)

where ∗ indicates a depthwise convolution operation, gσ

represents a 2-D Gaussian smoothing filter with variance σ ,
and ds is an s × s averaging filter, applied with stride s.
Thus, the problem of finding the unknown HR image Y can
be formulated as follows:

Y = arg min
Ŷ

||X − (Ŷ ∗ gσ ) ∗ ds ||p (4)

for some distance metric || · ||p (usually, p ∈ {1, 2}). This
problem is ill-posed, allowing for multiple possible solutions
for the unknown image Y . Nguyen et al. [25] provided an
iterative way of finding the above solution through the use
of a CNN for constructing the possible image candidates Ŷ
that would minimize (4). However, their approach implies
optimizing the network separately for each S2 acquisition,
which could be bothersome given a computer with lower
computing capabilities.

Applying such formulation in a super-resolution context
aims at ensuring the property of consistency [37]—every
super-resolved image once degraded to their initial spatial
resolution should resemble as good as possible the origi-
nally observed image. This is a necessary property, but not
sufficient to ensure good super-resolution results [37], given
the ill-posedness characteristic of the problem at hand. The
advantage of formulating the super-resolution problem in such
manner is the possibility of training directly on observed
data (as in [25]), eliminating the need of constructing syn-
thetic input–output image pairs. Shocher et al. [38] raised
the concern of testing a model trained solely on synthetically
constructed data in real-world scenarios, where it may yield
unsatisfactory results.

Finding a solution that would minimize (4) raises the
following question: how much detail could Ŷ encompass such
that its degraded version does not significantly deviate from
X? Since the super-resolution problem does not directly imply
any term regarding the level of spatial detail, including an
additional detail-related objective may force an optimization
path to a visually better solution, while still preserving the
consistency of results. We further test this assumption by
combining a consistency-related objective with another that
pushes the super-resolved image into maximizing the similar-
ity between its level of detail with one of the other HR images.
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Fig. 1. S2 areas used for testing. Bands B2, B3, and B4 were used for constructing the RGB representation. (a) Bucharest, Romania. (b) Dilo, Ethiopia.
(c) Tyrrhenian Sea, Italy. (d) NW Canada.

III. EVALUATION PROTOCOLS

One of the mostly adopted evaluation protocols for S2
super-resolution methods is by verifying the synthesis prop-
erty [37], [39] This protocol requires the method to be
evaluated on synthetically degraded data, taking the observed
images as the desired targets. This has been regarded as a
sufficient property for ensuring good super-resolution results.
However, the nature of the problem itself states that there
exists no unique solution for the super-resolved image. This
leads to the question of existence for a set of HR images,
not necessarily similar to the observed one, that could still be
considered viable candidate solutions.

A relatively unused evaluation protocol in the literature is
the one based on assessing the consistency property, which
states that degrading the obtained super-resolved HR band
should yield a result close to the observed LR band. Thus,
attaining a good consistency property does not impose only
a specific solution for the super-resolved band but allows for
a rather broad set of HR solutions. Advantages in using this
property as the main objective for training a model are the
removal for the need of constructing a synthetically degraded
dataset to fit the model on, along with a wider range for
possible output solutions. However, the latter does not account
for the visual quality of each such possible solution, hence not
necessarily implying good super-resolution results. As stated
in [37], this property alone is not sufficient to always ensure
reliable super-resolved images, but it is rather necessary.

While for consistency evaluation, one does not need an
HR reference image to measure the performance, such an
analysis does not consider all high-frequency details contained
in the super-resolved band. An evaluation, which uses the full
scale of predicted HR bands, is performed by measuring the
quality no reference (QNR) metrics, which has received popu-
larity among pan-sharpening applications [40], [41]. The QNR
is usually described in terms of pan-sharpening evaluation,
by considering a single HR image, which guides the fusion
process of multiple LR bands. For multiple available HR bands
(as in the S2 case), the QNR metric can be extended as follows:

QNR = (1 − Dλ)
t1(1 − DS)

t2 (5)

where

Dλ = p

√√√√√ 1
L(L − 1)

L∑
l,r=1
l ̸=r

∣∣∣Q
(

L̂RlL̂Rr

)
− Q(LRl , LRr )

∣∣∣p

DS =
q

√√√√ 1
L

L∑
l=1

R∑
r=1

∣∣∣Q
(

L̂Rl , HRr

)
− Q(LRl , HRr ↓)

∣∣∣q
.

Here, L and R are the numbers of LR and HR bands,
respectively, Q is the universal image quality index [42],
(̂·) denotes a super-resolved band, HRi/LRi denotes the i th
HR/LR observed band. In the S2 case, HR = X10 and
LR is either X20 or X60. All further results concerning this
evaluation are obtained for t1 = t2 = p = q = 1, thus equal
contribution from Dλ and DS . A high QNR metric implies
that the fusion process preserves the similarity between LR
bands (measured through the spectral distortion Dλ) and the
similarity between the degraded HR bands and original LR
bands (spatial distortion DS).

Another common evaluation is based on visual inspection,
presenting a side-by-side comparison of observed LR bands
and their super-resolved solutions. Displaying areas of interest
analyzed through different super-resolution methods may pro-
vide meaningful insight for constructing a better comparison
between these techniques. However, one should question the
detail authenticity induced by each method, knowing the
desired spatial resolution the images should be at. Each
visual evaluation could therefore benefit from including an
already available HR band next to the illustrations, providing
authentic high-frequency details as guidance for the visual
quality assessment.

IV. PROPOSED METHOD

For training/testing data, we selected Level-1C products,
each tile spanning an area of 100 × 100 km2, from both
Sentinel-2A and Sentinel-2B satellites. We used 14 such tiles
for training and four for testing, capturing a diversity of
environments. The RGB representation of test areas is shown
in Fig. 1. Since S2 image data come in tiles with a spatial
dimension of 10 980 × 10 980 pixels for 10-m bands, directly
feeding them to a neural network would be impractical.
Thus, we partitioned each training/testing tile into 192 ×

192 patches to be directly processed by the network. Before
any processing, the raw reflectance value is divided by 2000
(as in [13], for numerical stability). All networks were trained
in typical settings: initializing the weights with Glorot uniform
[43] and using Adam optimizer [44] with a learning rate of
10−4 with hyperparameters β1 = 0.9 and β2 = 0.999.

The proposed CNN architecture is presented in Fig. 2, for
6× super-resolution. We trained two such networks, one for
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Fig. 2. Proposed neural network architecture (green boxes) and workflow diagram for 6× super-resolution. The two branches resemble the two consecutive
forward propagations through the same network: one for the real S2 image patches and one for their degraded counterparts. Their outputs are further used
for computing different error terms, from which a linear combination is formed to result in the final cost. The consistency branch aims at obtaining realistic
high-frequency details while preserving the original physical characteristics in the super-resolved images. The synthesis branch, acting on degraded data,
is designed to approximate a direct fusion to available ground truth, implying a supervised learning step in a reduced-resolution context.

super-resolving the 20-m bands and one for the 60-m bands.
In the following, the network for super-resolving the 60-m
bands is presented. All 20- and 60-m patches are upsampled
using bilinear interpolation up to the spatial dimensions of
10-m patches, before any processing implied by the CNN.
The network received as input the channelwise concatenation
of these upsampled patches, which are first processed by a
2-D convolution layer to increase the number of channels. All
2-D convolution layers contain 64 filters of dimension 3 ×

3 or 1 × 1. We used ReLU activation for all cases, due to its
efficiency in terms of computation time and training stability.
Following the first convolution layer, a series of residual blocks
is utilized, each block implying two convolution operations.
Based on the work in [45], the first convolution layer uses
1 × 1 filters, while the second one uses 3 × 3 filters,
encapsulating a ReLU nonlinearity. The first three residual
blocks are standard, combining the input from the previous
residual block with the features computed by the current
block. The last three residual blocks operate on the previous
features channelwise concatenated with the upsampled 60-m
patches, with the intent of retaining some of the radiometric
properties from the original bands. Szegedy et al. [45] also
introduced a mechanism called residual scaling by which the
outputs of the final convolution layer in a residual block are
scaled down by a subunitary constant value (usually chosen
between 0.1 and 0.3). This additional step has been shown

to stabilize training, which may present some benefit in cases
where training data distribution spans over a wide domain,
such as the multitude of environments captured by S2 images.
The same mechanism is used in [13] by choosing a constant
value of 0.1 for scaling the residual features. We have also
included a similar step in our residual blocks, by introducing
a trainable residual scaling layer (see Fig. 2) through which
the scaling factor is learned during the optimization process.
This avoids the need of arbitrarily setting each scaling factor
to a constant value, thus allowing for an adaptive change for
the importance of each residual block’s computed features,
by lowering/increasing their residual scaling factors. Each
residual scaling factor is initialized with a fixed value of
0.05 and is constrained to always be positive during the
optimization steps. Following the sequence of residual blocks,
the computed feature maps are passed to a convolution layer
with two 1 × 1 filters, fusing the previous feature volume
in two channels. The final prediction is obtained through an
elementwise addition between the original upsampled image
patches and the previously computed two-channel features.
For the ×2 super-resolution network, the only difference is
the removal of 60-m input since it does not bring any helpful
information to the process.

Both the proposed architectures, for 2× and 6× super-
resolution, are trained using a weighted sum of three different
loss terms, mainly aimed at preserving the two previously
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discussed properties—consistency and synthesis—, along with
a term penalizing the high-frequency details. This is achieved
by implying two consecutive steps for each batch optimization:
directly feeding the input patches to the network and forcing
the degraded output to resemble as close as possible the LR
input patches (consistency branch from Fig. 2), degrading
the input patches and feeding them to the network in order
to produce an output as close as possible to the original
LR patches (synthesis branch from Fig. 2). In addition to
preserving the consistency of results, the first branch also
implies a direct similarity term between the high-frequency
details contained in the super-resolved image and real details
extracted from a subset of 10-m input patches. The motivation
behind this optimization step resides in achieving a visual
quality for the super-resolved image that closely matches the
level of details contained by observed HR patches.

In the following, we present the training objective for the
network tasked with super-resolving the 60-m bands up to
10-m spatial resolution. A similar mechanism can be easily
derived for the loss implied in super-resolving the 20-m bands.
Let T (·) denote the HR prediction of the proposed neural
network model. The loss function L is described as follows:

L = αLconsistency + βLsym + γLsynthesis (6)
Lconsistency = ||(T (X10, X20, X60)) ↓6 −X60||1 (7)

Lsym =

∑
j∈J

(1 − sym(X10, j , T (X10, X20, X60))) (8)

sym(X, Y ) =
⟨∇X , ∇Y ⟩

||∇X ||2||∇Y ||2
(9)

Lsynthesis = ||T (X10 ↓6, X20 ↓6, X60 ↓6) − X60||1 (10)

where J represents the set of 10-m observed bands used
for computing Lsym, X10, j is the input patch from the j th
10 m band, sym(x, y) denotes the similarity function (using
cosine similarity), ⟨·, ·⟩ is the dot product between vectorized
images, ∇X denotes the gradient of image X obtained by linear
2-D filtering with a Laplacian operator and || · ||1 denotes the
L1 norm. Note that before computing the 2-D gradient of an
image we applied a 3 × 3 average smoothing filter to counter
the sensitivity to noise of the Laplacian operator. In (6), α, β,

and γ are hyperparameters meant for controlling the overall
influence of each loss term over the final super-resolution
properties. In Section V, we provide insight regarding the
influence of the three loss terms included in (6), along with
performance measures for our 6× and 2× super-resolution
methods for S2 bands.

V. EXPERIMENTS AND RESULTS

Given the three hyperparameters (α, β, and γ ) from (6),
we trained four separate networks using the architecture
described in Section IV, with different loss configurations
(further referred to by their corresponding (α, β, and γ )

triplet) for 6× super-resolution, in order to examine their
influence on full- and reduced-resolution evaluation.

1) (α, β, γ ) = (1, 1, 1), equal contribution of all three loss
terms.

2) (α, β, γ ) = (1, 0.1, 1), less focus on minimizing the
similarity component.

Fig. 3. Visual comparison between three network variants trained for ×

super-resolution. All results are obtained by feeding the network’s real S2
images. (From left to right) Original, (1, 1, 1), (1, 0.1, 1), and (1, 0.1, 0).
B1 on the first two rows and B9 on the last two rows.

TABLE I
COMPARISON BETWEEN NETWORKS ON 6× SUPER-RESOLUTION FOR

REDUCED-RESOLUTION EVALUATION

TABLE II
COMPARISON BETWEEN NETWORKS ON 6× SUPER-RESOLUTION

FOR REDUCED-RESOLUTION EVALUATION

3) (α, β, γ ) = (1, 0.1, 0), no contribution from the syn-
thesis branch.

4) (α, β, γ ) = (0, 0, 1), only the synthesis component is
minimized.

The results on full-resolution evaluation for the four net-
works are shown in Table I and on reduced-resolution eval-
uation in Table II, as mean values over all test patches.
Kullback–Leibler (KL) divergence is measured between the
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TABLE III
PERFORMANCE COMPARISON USING WALD’S PROTOCOL FOR 2× SUPER-RESOLUTION ON SYNTHETIC DATA

super-resolved band and the original band, by quantizing the
range 0–10 000 of reflectance values into 1000 equal width
bins in order to construct a discrete probability distribution
using the frequency of occurrence in each bin. In Table I,
root-mean-squared error (RMSE) is measured between the
original LR band and the degraded super-resolved band, while
in Table II, RMSE is measured between super-resolved bands
and ground truth—similarly for the structural similarity index
(SSIM). Note that the mean QNR values are very close
between the four networks, indicating little to no discrepancy
between results at full-resolution evaluation, not aligning with
the other metrics and the clear visual differences shown in
Fig. 3. Thus, we decided to exclude the QNR evaluation from
all future experiments. Results show that including the syn-
thesis term Lsynthesis during the training process is effective on
reduced-resolution evaluation, as shown in Table II, network
(1, 0.1, 1) delivering better results than (1, 0.1, 0). Training
using only the synthesis term (network (0, 0, 1)) leads to
the highest SSIM values for reduced-resolution evaluation
but results in the highest RMSE. While network (1, 0.1, 1)

obtains slightly lower SSIM values for the same evaluation,
it leads to the best RMSE on both 60-m bands, indicating a
more favorable solution with respect to radiometric accuracy,
while also maintaining a similar visual aspect (Table II). The
results on full-resolution evaluation indicate that configuration
(0, 0, 1) achieves the highest mean RMSE on band B9 and
the second highest on B1. Since both configurations (0, 0, 1)

and (1, 0.1, 0) achieve relatively high RMSE values on full-
and reduced-resolution evaluation, and given that configuration
(1, 0.1, 1) results in the best performance on both evaluations,
we concluded that using a mixture of all three components
for optimization could lead to a reliable super-resolution
algorithm. We found that assigning an equal contribution to

all loss terms does not help in finding a good equilibrium state
with both good visuals and good evaluation results. Reducing
the value of β helps with achieving a good radiometric
quality—according to Table I—while also not degrading the
visual quality, as observed in Fig. 3. We hypothesize that
this behavior is due to the opposing objective of Lsym and
the other two loss terms, raising the need for finding a
good tradeoff between visual quality and good consistency
and synthesis metrics. Adding too much focus on correlating
the super-resolved bands with observed 10-m bands clearly
does not guarantee either good consistency or synthesis. This
need of achieving a good tradeoff between visual quality
and metrics translates into finding the appropriate weighting
coefficients for the three loss terms.

In the following, we assessed the performance of both
networks for 2× and 6× super-resolution with respect to the
consistency and synthesis property. In the case of consistency
assessment, the RMSE, signal-to-reconstruction error (SRE),
and SSIM are computed between the original LR band and the
degraded network output. Note that all results are measured
given pairs of images with pixel values from the original S2
spectral bands. For reduced-resolution evaluation, we degrade
all bands in order to reduce their spatial resolution s times,
where s ∈ {2, 6}, feed them to the network, and compare the
results with the original LR bands. Following the work in [25],
the degradation process is designed according to (3), using
a Gaussian kernel with standard deviation σs for depthwise
filtering, followed by a downsampling operation using an s × s
averaging filter applied with a stride of s. For 2× degradation,
we use σ2 = 1 with kernel size 7 × 7, and for 6× degradation,
we use σ6 = 3 with kernel size 15 × 15.

We focused on comparing the performance of the pro-
posed model to another S2 super-resolution method based on
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TABLE IV
PERFORMANCE COMPARISON USING WALD’S PROTOCOL FOR 2× SUPER-RESOLUTION ON SYNTHETIC DATA

Fig. 4. Absolute differences between super-resolved 20-m bands and ground truth, using Wald’s protocol (degraded S2 data). First row: bicubic interpolation.
Second row: DSen2 [13]. Third row: proposed method. Region extracted from Italy tile. (a) B5. (b) B6. (c) B7. (d) RGB. (e) B8a. (f) B11. (g) B12.

deep learning techniques, namely, DSen2 [13]. We trained
our ×2 super-resolution architecture using the configura-
tion (α, β, γ ) = (1, 0.1, 1). Through multiple experiments,
we decided that for bands B5, B11, and B12, a direct similarity
with any 10-m band resulted in worse visual and performance
results; thus, the loss term from (8) is not considered during
the optimization for these three bands. We decided for bands
B6, B7, and B8a to include the similarity with band B8 (10
m) during training, after multiple experiments regarding the
choice of β and the set of 10-m bands to extract details from.

For bands B11 and B12, poor performance when increasing the
similarity with a 10-m band could be explained by considering
their spectral characteristics since their central wavelength is
a lot more distanced from any 10-m band, compared with
the other 20-m bands. In Table III, the results for consistency
evaluation for 2× super-resolution are presented. Our archi-
tecture performed better with regard to averaged results over
all 20-m bands, in terms of RMSE and SRE. For the Ethiopia
tile, DSen2 [13] performed better on bands B6, B7, and B8a in
terms of RMSE, allowing for a better recovery of the observed
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Fig. 5. Absolute differences between super-resolved 20-m bands and ground truth, using Wald’s protocol (degraded S2 data). First row: bicubic interpolation.
Second row: DSen2 [13]. Third row: proposed method. Region extracted from Bucharest area. (a) B5. (b) B6. (c) B7. (d) RGB. (e) B8a. (f) B11. (g) B12.

TABLE V
PERFORMANCE COMPARISON USING WALD’S PROTOCOL FOR 6× SUPER-RESOLUTION ON SYNTHETIC DATA

image. Since Lsym was also used during training for these three
bands, we hypothesized that the increased detail similarity with
another 10-m band did not allow for a fairly good recovery of
the observed image, for this particular test area. However, for
the rest of the test images, our architecture performed better on
these three bands, indicating that a majority of geographical
areas could benefit from a direct transfer of details from 10-m
bands while still being consistent with the observed LR bands.
One thing to notice in Table III is the results for Canada tile,
which are relatively high in magnitude compared to the other

three areas, for both methods. This may be explained by a big
difference in reflectance characteristics for snow-covered areas
compared to other geographic zones, leading to poor results
for deep learning methods that are usually exposed during the
training process to areas with different radiometric properties.
The results for reduced-resolution evaluation are presented in
Table IV. Our method delivers good mean results over all
20-m bands in terms of RMSE and SRE, while for SSIM,
it outperforms DSen2 on Romania and Ethiopia tile. On bands
B11 and B12 for Italy and Canada tiles, applying DSen2
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TABLE VI
PERFORMANCE COMPARISON USING WALD’S PROTOCOL FOR 6× SUPER-RESOLUTION ON SYNTHETIC DATA

results in lower RMSE, which also leads to a higher average
SSIM value. Similar to the previous evaluation, the results for
Canada tile show a big difference in terms of magnitude, for
both methods, indicating possible shortcomings in applying
data-driven methods for snow-covered areas. DSen2 performs
better on bands B11 and B12 on Italy and Canada tiles, and
also on band B8a for Ethiopia and B5 for Romania, with
minor differences for the last two. The remaining results are,
however, considerably better for our method, which leads to
an overall improved mean performance. Two visual examples
are presented, in Fig. 4 for an area from Italy tile and in
Fig. 5 for an area from Romania tile. The example in Fig. 4
illustrates a better performance for our method on bands B5,
B6, B7, and B8a while achieving visually similar results for
bands B11 and B12. This similarity, also verified through the
results from Table IV (synthesis evaluation), may be explained
given how the error for these two bands is computed during
training: since only Lconsistency and Lsynthesis are employed
for bands B11 and B12, and given that DSen2 is optimized
through a cost function similar to Lsynthesis, it is natural to
expect a similar performance on synthesis evaluation, along
with a better performance on consistency evaluation for our
method (as shown in Table III). Note here that our method
performs especially well on areas containing land-to-water
transitions, resulting in less artifacts than DSen2 for such
regions. In Fig. 5, the example on a Bucharest region with
an increased number of details also suggests that our method
outperforms DSen2 on bands B5, B6, B7, and B8a.

For 6× super-resolution assessment, we conducted similar
evaluation steps as in the 2× case, additionally including
a visual comparison to accompany the numerical results.
Table V contains the consistency evaluation results for

super-resolving bands B1 and B9. For band B9, our method
outperforms DSen2 on all test images while also achieving
better mean results. On band B1, DSen2 achieves better SSIM
scores on Romania and Ethiopia tiles, with very small differ-
ences compared to our method. Both methods also indicate
deficiencies for the snow-covered image from Canada, in terms
of magnitude for RMSE and SRE when compared to the other
test tiles, achieving, however, a good SSIM score. One impor-
tant element to consider in Tables III and V is the relatively
poor performance of bicubic interpolation. Given that the pro-
cess of bicubic upsampling does not introduce high-frequency
details in the generated images, not aligning with the char-
acteristics of an HR image, the degradation process applied
during consistency evaluation is performed on an image with
a lower resolution than expected. This results in degraded
images having less details than the observed ones and, hence,
low-performance measures between the two. The reduced-
resolution evaluation results are presented in Table VI, along
with one example from each test image shown in Fig. 6. Our
method is shown to perform better on Italy and Canada tiles,
while DSen2 performed overall better on the other two test
images, given table results. Even though the numerical results
indicate a poor performance on some test images, compared
to DSen2, we determined that this is due to the increased
number of details for the super-resolved images our method
produces, not always aligning with the level of detail from the
reference image. Visual results for full-resolution upsampling
are presented in Fig. 7, with the intent of comparing the level
of detail induced by each method with the level of detail
from an observed 10-m band. Here, we include an additional
visual comparison with another method, namely, SSSS [23],
which was shown to produce among the best visual results
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Fig. 6. Absolute differences between super-resolved 60-m bands and ground truth, using Wald’s protocol (degraded S2 data). First row: bicubic interpolation.
Second row: DSen2 [13]. Third row: proposed method. Region (a) extracted from Canada, region (d) from Italy, region (g) from Romania, and region (j) from
Ethiopia. (a) RGB. (b) B1. (c) B9. (d) RGB. (e) B1. (f) B9. (g) RGB. (h) B1. (i) B9. (j) RGB. (k) B1. (l) B9.

on 6× super-resolution in an extensive comparative study con-
ducted in [24]. Visually, our method produces super-resolved
bands with an increased number of details, leveling up with the
high-frequency components of existing 10-m bands. On band
B1, SSSS results contain fairly different radiometric values,
compared to the original band, while DSen2 and our method
show little difference from the original reflectance distribution.
On band B9, both SSSS and DSen2 are shown to obtain
suboptimal results regarding the amount of detail, compared
to our method. Note that along with an increased number
of details, our method also performs considerably better on
consistency evaluation, leading us to conclude that the method
could be used as a reliable super-resolution mechanism for
upsampling 60-m bands. In the light of the ill-posedness
characteristic of the problem at hand, which was discussed
in Section III, we acknowledge that our method leads to
super-resolved images with good consistency properties and

realistic high-frequency details, not always aligning with the
reference solution considered in synthesis evaluation.

Choosing the right weighting parameters for the loss func-
tions represents an important step, exerting a high influence
over the numerical and visual results, as we have seen from
Tables I and II and Fig. 3. However, training multiple models
with slight differences in their loss configuration, in order
to determine the right direction for modifying the weighting
terms, is a highly time-consuming process. One solution would
be to condition the model’s output on these three weighting
factors, eliminating the need of an intensive search process for
the right combination. This approach has been recently dis-
cussed and presented in [46] as you only train once (YOTO),
introduced as a new mechanism for loss-conditioned training
of neural networks. Applying such method in applications with
multiple training objectives, in particular to our solution for S2
super-resolution, could lead to a reliable searching algorithm
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Fig. 7. Results on real S2 data for 6× super-resolution. The first four rows correspond to super-resolving band B1, while the last four are for band B9.
(From left to right) Original patch, bicubic interpolation, SSSS [23], DSen2 [13], proposed method, band B2 (10 m) for the first four rows, and band B8 (10
m) for the last four rows.

for the right hyperparameter combination, ensuring a better
final performance.

VI. CONCLUSION

In this article, we presented a mechanism for
super-resolving the 20- and 60-m bands provided by S2

up to 10-m spatial resolution, based on fully CNNs. The
architectures were trained using a multiobjective loss
function, aimed at achieving a good tradeoff between three
distinct features: good consistency properties, good synthesis
properties, and visually realistic high-frequency components.
The first objective was tackled by adopting previously
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established MTF-based methods. The second one relied on an
additional optimization step using degraded data, a common
training strategy among many super-resolution methods. The
third objective implied adding a direct similarity measure
between details from generated super-resolved bands and
real details extracted from already available 10-m bands.
Our trained architectures delivered good results on both
reduced-resolution evaluation (synthesis) and full-resolution
evaluation (consistency) for 20-m bands, given a wide variety
of environments, proving good generalization capabilities.
For super-resolving the 60-m bands, our method was able to
achieve a better consistency, along with enhanced realistic
high-frequency components. While there exist a variety of
evaluation protocols more or less adopted for super-resolution
methods, we feel that the lack of an exact solution for any
super-resolved real image should motivate the comparison
between the results obtained using multiple evaluation
schemes. Along with mechanisms designed for automatically
finding a good tradeoff for multiobjective training, our
future work will include building evaluation mechanisms for
assessing the level of trust in super-resolution methods.
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