Ristea, Nicolae-Catalin and Anghel, Andrei and Datcu, Mihai and Chapron, Bertrand (2023) Guided Unsupervised Learning by Subaperture Decomposition for Ocean SAR Image Retrieval. IEEE Transactions on Geoscience and Remote Sensing, 61, e5207111. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2023.3272279. ISSN 0196-2892.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/document/10113703/authors
Abstract
A spaceborne synthetic aperture radar (SAR) can provide accurate images of the ocean surface roughness day-or-night in nearly all-weather conditions, being a unique asset for many geophysical applications. Considering the huge amount of data daily acquired by satellites, automated techniques for physical features extraction are needed. Even if supervised deep learning methods attain state-of-the-art results, they require a great amount of labeled data, which are difficult and excessively expensive to acquire for ocean SAR imagery. To this end, we use the subaperture decomposition (SD) algorithm to enhance the unsupervised learning retrieval on the ocean surface, empowering ocean researchers to search into large ocean databases. We empirically prove that SD improves the retrieval precision with over 20% for an unsupervised transformer autoencoder network. Moreover, we show that SD brings an important performance boost when Doppler centroid images are used as input data, leading the way to new unsupervised physics-guided retrieval algorithms.
Item URL in elib: | https://elib.dlr.de/201627/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Guided Unsupervised Learning by Subaperture Decomposition for Ocean SAR Image Retrieval | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | May 2023 | ||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 61 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2023.3272279 | ||||||||||||||||||||
Page Range: | e5207111 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Doppler centroid estimation (DCE), image retrieval, ocean imagery, remote sensing (RS), subapertures decomposition, synthetic aperture radar (SAR), unsupervised learning. | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Dumitru, Corneliu Octavian | ||||||||||||||||||||
Deposited On: | 11 Jan 2024 10:40 | ||||||||||||||||||||
Last Modified: | 11 Jan 2024 10:40 |
Repository Staff Only: item control page