Ristea, Nicolae-Catalin und Anghel, Andrei und Datcu, Mihai und Chapron, Bertrand (2023) Guided Unsupervised Learning by Subaperture Decomposition for Ocean SAR Image Retrieval. IEEE Transactions on Geoscience and Remote Sensing, 61, e5207111. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2023.3272279. ISSN 0196-2892.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/10113703/authors
Kurzfassung
A spaceborne synthetic aperture radar (SAR) can provide accurate images of the ocean surface roughness day-or-night in nearly all-weather conditions, being a unique asset for many geophysical applications. Considering the huge amount of data daily acquired by satellites, automated techniques for physical features extraction are needed. Even if supervised deep learning methods attain state-of-the-art results, they require a great amount of labeled data, which are difficult and excessively expensive to acquire for ocean SAR imagery. To this end, we use the subaperture decomposition (SD) algorithm to enhance the unsupervised learning retrieval on the ocean surface, empowering ocean researchers to search into large ocean databases. We empirically prove that SD improves the retrieval precision with over 20% for an unsupervised transformer autoencoder network. Moreover, we show that SD brings an important performance boost when Doppler centroid images are used as input data, leading the way to new unsupervised physics-guided retrieval algorithms.
elib-URL des Eintrags: | https://elib.dlr.de/201627/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Guided Unsupervised Learning by Subaperture Decomposition for Ocean SAR Image Retrieval | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Mai 2023 | ||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 61 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2023.3272279 | ||||||||||||||||||||
Seitenbereich: | e5207111 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Doppler centroid estimation (DCE), image retrieval, ocean imagery, remote sensing (RS), subapertures decomposition, synthetic aperture radar (SAR), unsupervised learning. | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Dumitru, Corneliu Octavian | ||||||||||||||||||||
Hinterlegt am: | 11 Jan 2024 10:40 | ||||||||||||||||||||
Letzte Änderung: | 11 Jan 2024 10:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags