Iqbal, M. Amjed and Anghel, Andrei and Datcu, Mihai (2023) Polarimetric decomposition for an unsupervised ice separation approach using the CFAR method. 11th International Workshop on Sea Ice Modelling, Assimilation, Observations, Predictions and Verification, 2023-03-21 - 2023-03-23, Oslo, Norway.
Full text not available from this repository.
Official URL: https://iicwg-da-11.met.no/
Abstract
Accurate information on the extent and dynamics of ice cover is important at a global scale. Due to the day-night and weather independent imagery capabilities, Sentinel-1 (S1) is a reliable source for ice monitoring using Synthetic aperture radar (SAR) images. Therefore, this study focuses on an unsupervised method for extracting ice cover by exploiting dual-pol S1 SAR data. We adapt a constant false alarm rate (CFAR) detector for ice cover detection by examining the empirical distribution of a given metric over a water region, followed by a statistical comparison of the resulting distribution with the theoretical gamma distribution to derive the CFAR threshold value. To achieve ice detection, a binary image is first retrieved, and then the ice edges are quantified using the Canny edge detector. To evaluate the effectiveness of the proposed method, we applied it to SAR data from a challenging environment, including terrain, ice, and water. The results are further verified using Sentinel-2 (S2) as the ground truth data, which showed a maximum correlation in the extraction. Our findings demonstrate the soundness of the proposed method for iceberg extraction using Sentinel-1 data.
Item URL in elib: | https://elib.dlr.de/201620/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||
Title: | Polarimetric decomposition for an unsupervised ice separation approach using the CFAR method | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | March 2023 | ||||||||||||||||
Refereed publication: | No | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | No | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Sentinel-1, Sentinel-2, CFAR method | ||||||||||||||||
Event Title: | 11th International Workshop on Sea Ice Modelling, Assimilation, Observations, Predictions and Verification | ||||||||||||||||
Event Location: | Oslo, Norway | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 21 March 2023 | ||||||||||||||||
Event End Date: | 23 March 2023 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Dumitru, Corneliu Octavian | ||||||||||||||||
Deposited On: | 10 Jan 2024 13:31 | ||||||||||||||||
Last Modified: | 24 Apr 2024 21:02 |
Repository Staff Only: item control page