Keymasi, Mobina and Ghozatlou, Andrei and Conde, Miguel Heredia and Datcu, Mihai (2023) An Efficient Compressive Learning Method on Earth Observation Data. In: 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023, pp. 5285-5287. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, CA, USA. doi: 10.1109/IGARSS52108.2023.10281758. ISBN 979-835032010-7. ISSN 2153-6996.
Full text not available from this repository.
Official URL: https://2023.ieeeigarss.org/
Abstract
Compressive learning (CL) for Synthetic Aperture Radar (SAR) refers to the use of Compressive Sensing (CS) to reduce the amount of data required to represent SAR images while preserving key image features, with the goal of improving efficiency and lowering computational costs. In this paper, we propose a new, highly efficient RS technique based on creating a transcription between several classes. The proposed method is based on a novel CL theory, which is a joint signal processing and machine learning framework for inference from a signal that is represented by a small number of measurements obtained via linear projections of the data without first reconstructing the data. The results showed that, by minimizing the number of measurements or pixels in a data set, the accuracy curve will change depending on the data set and the method that is used. The algorithm reached an accuracy of about 80 % on SAR data, when using a SVM as classifier and a Binary sensing matrix when the number of pixels is reduced to 1/8 of the whole data.
Item URL in elib: | https://elib.dlr.de/201619/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||
Title: | An Efficient Compressive Learning Method on Earth Observation Data | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2023 | ||||||||||||||||||||
Journal or Publication Title: | 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10281758 | ||||||||||||||||||||
Page Range: | pp. 5285-5287 | ||||||||||||||||||||
ISSN: | 2153-6996 | ||||||||||||||||||||
ISBN: | 979-835032010-7 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Compressive learning (CL), Synthetic Aperture Radar (SAR), Compressive Sensing (CS), Remote Sensing (RS), Joint Signal Processing, Machine Learning Framework. | ||||||||||||||||||||
Event Title: | IGARSS 2023 | ||||||||||||||||||||
Event Location: | Pasadena, CA, USA | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 16 July 2023 | ||||||||||||||||||||
Event End Date: | 21 July 2023 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Dumitru, Corneliu Octavian | ||||||||||||||||||||
Deposited On: | 10 Jan 2024 12:06 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 21:02 |
Repository Staff Only: item control page