Keymasi, Mobina und Ghozatlou, Andrei und Conde, Miguel Heredia und Datcu, Mihai (2023) An Efficient Compressive Learning Method on Earth Observation Data. In: 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023, Seiten 5285-5287. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, CA, USA. doi: 10.1109/IGARSS52108.2023.10281758. ISBN 979-835032010-7. ISSN 2153-6996.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://2023.ieeeigarss.org/
Kurzfassung
Compressive learning (CL) for Synthetic Aperture Radar (SAR) refers to the use of Compressive Sensing (CS) to reduce the amount of data required to represent SAR images while preserving key image features, with the goal of improving efficiency and lowering computational costs. In this paper, we propose a new, highly efficient RS technique based on creating a transcription between several classes. The proposed method is based on a novel CL theory, which is a joint signal processing and machine learning framework for inference from a signal that is represented by a small number of measurements obtained via linear projections of the data without first reconstructing the data. The results showed that, by minimizing the number of measurements or pixels in a data set, the accuracy curve will change depending on the data set and the method that is used. The algorithm reached an accuracy of about 80 % on SAR data, when using a SVM as classifier and a Binary sensing matrix when the number of pixels is reduced to 1/8 of the whole data.
elib-URL des Eintrags: | https://elib.dlr.de/201619/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | An Efficient Compressive Learning Method on Earth Observation Data | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2023 | ||||||||||||||||||||
Erschienen in: | 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10281758 | ||||||||||||||||||||
Seitenbereich: | Seiten 5285-5287 | ||||||||||||||||||||
ISSN: | 2153-6996 | ||||||||||||||||||||
ISBN: | 979-835032010-7 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Compressive learning (CL), Synthetic Aperture Radar (SAR), Compressive Sensing (CS), Remote Sensing (RS), Joint Signal Processing, Machine Learning Framework. | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2023 | ||||||||||||||||||||
Veranstaltungsort: | Pasadena, CA, USA | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 16 Juli 2023 | ||||||||||||||||||||
Veranstaltungsende: | 21 Juli 2023 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Dumitru, Corneliu Octavian | ||||||||||||||||||||
Hinterlegt am: | 10 Jan 2024 12:06 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 21:02 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags