Ristea, Nicolae-Cătălin and Anghel, Andrei and Datcu, Mihai (2023) Sea Ice Segmentation from SAR Data by Convolutional Transformer Networks. In: 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023, pp. 168-171. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, CA, USA. doi: 10.1109/IGARSS52108.2023.10283427. ISBN 979-835032010-7. ISSN 2153-6996.
Full text not available from this repository.
Official URL: https://2023.ieeeigarss.org/
Abstract
Sea ice is a crucial component of the Earth’s climate system and is highly sensitive to changes in temperature and atmospheric conditions. Accurate and timely measurement of sea ice parameters is important for understanding and predicting the impacts of climate change. Nevertheless, the amount of satellite data acquired over ice areas is huge, making the subjective measurements ineffective. Therefore, automated algorithms must be used in order to fully exploit the continuous data feeds coming from satellites. In this paper, we present a novel approach for sea ice segmentation based on SAR satellite imagery using hybrid convolutional transformer (ConvTr) networks. We show that our approach outperforms classical convolutional networks, while being considerably more efficient than pure transformer models. ConvTr obtained a mean intersection over union (mIoU) of 63.68% on the AI4Arctic data set, assuming an inference time of 120ms for a 400×400 km 2 product.
Item URL in elib: | https://elib.dlr.de/201616/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||
Title: | Sea Ice Segmentation from SAR Data by Convolutional Transformer Networks | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2023 | ||||||||||||||||
Journal or Publication Title: | 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | No | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10283427 | ||||||||||||||||
Page Range: | pp. 168-171 | ||||||||||||||||
ISSN: | 2153-6996 | ||||||||||||||||
ISBN: | 979-835032010-7 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Transformers, remote sensing, SAR, deep learning, semantic segmentation. | ||||||||||||||||
Event Title: | IGARSS 2023 | ||||||||||||||||
Event Location: | Pasadena, CA, USA | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 16 July 2023 | ||||||||||||||||
Event End Date: | 21 July 2023 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Dumitru, Corneliu Octavian | ||||||||||||||||
Deposited On: | 10 Jan 2024 11:50 | ||||||||||||||||
Last Modified: | 24 Apr 2024 21:02 |
Repository Staff Only: item control page