Ristea, Nicolae-Cătălin und Anghel, Andrei und Datcu, Mihai (2023) Sea Ice Segmentation from SAR Data by Convolutional Transformer Networks. In: 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023, Seiten 168-171. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, CA, USA. doi: 10.1109/IGARSS52108.2023.10283427. ISBN 979-835032010-7. ISSN 2153-6996.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://2023.ieeeigarss.org/
Kurzfassung
Sea ice is a crucial component of the Earth’s climate system and is highly sensitive to changes in temperature and atmospheric conditions. Accurate and timely measurement of sea ice parameters is important for understanding and predicting the impacts of climate change. Nevertheless, the amount of satellite data acquired over ice areas is huge, making the subjective measurements ineffective. Therefore, automated algorithms must be used in order to fully exploit the continuous data feeds coming from satellites. In this paper, we present a novel approach for sea ice segmentation based on SAR satellite imagery using hybrid convolutional transformer (ConvTr) networks. We show that our approach outperforms classical convolutional networks, while being considerably more efficient than pure transformer models. ConvTr obtained a mean intersection over union (mIoU) of 63.68% on the AI4Arctic data set, assuming an inference time of 120ms for a 400×400 km 2 product.
elib-URL des Eintrags: | https://elib.dlr.de/201616/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Sea Ice Segmentation from SAR Data by Convolutional Transformer Networks | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2023 | ||||||||||||||||
Erschienen in: | 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10283427 | ||||||||||||||||
Seitenbereich: | Seiten 168-171 | ||||||||||||||||
ISSN: | 2153-6996 | ||||||||||||||||
ISBN: | 979-835032010-7 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Transformers, remote sensing, SAR, deep learning, semantic segmentation. | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2023 | ||||||||||||||||
Veranstaltungsort: | Pasadena, CA, USA | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 16 Juli 2023 | ||||||||||||||||
Veranstaltungsende: | 21 Juli 2023 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Dumitru, Corneliu Octavian | ||||||||||||||||
Hinterlegt am: | 10 Jan 2024 11:50 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 21:02 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags