Xu, Chnag and Yang, Wen and Yu, Huai and Datcu, Mihai and Gui-Song, Xia (2023) Density-aware Object Detection in Aerial Images. In: 15th International Conference on Digital Image Processing, ICDIP 2023, pp. 1-9. ICDIP '23, 2023-05-19 - 2023-05-22, Nanjing, China. doi: 10.1145/3604078.3604120.
Full text not available from this repository.
Official URL: https://dl.acm.org/doi/10.1145/3604078.3604120
Abstract
Detecting densely arranged objects is challenging due to the lack of generic definitions and the feature coupling between nearby objects. This paper proposes mathematical definitions of the instance-level, image-level, and dataset-level object density by information theory, called Density Index (DI). The DI shows a high consistency with human perception, serving as a powerful guide for aerial object detection, including data assessment and detector customization. Under the guidance of the DI, we design a DeDet to enhance the detector's performance in detecting densely arranged objects. DeDet pursues accurate location for densely arranged objects by the Density-aware Label Assignment (DLA) and Density-aware Feature Extraction (DFE), conquering the heuristic that the sample assignment and feature extraction are performed independently for each object. Experiments on the DOTA-v1.0 and DOTA-v2.0 show that DeDet can bring a significant improvement to the baseline detector.
Item URL in elib: | https://elib.dlr.de/201606/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Additional Information: | The full paper is available at: https://dl.acm.org/doi/pdf/10.1145/3604078.3604120 | ||||||||||||||||||||||||
Title: | Density-aware Object Detection in Aerial Images | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 26 October 2023 | ||||||||||||||||||||||||
Journal or Publication Title: | 15th International Conference on Digital Image Processing, ICDIP 2023 | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
DOI: | 10.1145/3604078.3604120 | ||||||||||||||||||||||||
Page Range: | pp. 1-9 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Aerial images, Object detection, Density index, Feature extraction | ||||||||||||||||||||||||
Event Title: | ICDIP '23 | ||||||||||||||||||||||||
Event Location: | Nanjing, China | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 19 May 2023 | ||||||||||||||||||||||||
Event End Date: | 22 May 2023 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Dumitru, Corneliu Octavian | ||||||||||||||||||||||||
Deposited On: | 09 Jan 2024 15:29 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 21:02 |
Repository Staff Only: item control page