Xu, Chnag und Yang, Wen und Yu, Huai und Datcu, Mihai und Gui-Song, Xia (2023) Density-aware Object Detection in Aerial Images. In: 15th International Conference on Digital Image Processing, ICDIP 2023, Seiten 1-9. ICDIP '23, 2023-05-19 - 2023-05-22, Nanjing, China. doi: 10.1145/3604078.3604120.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://dl.acm.org/doi/10.1145/3604078.3604120
Kurzfassung
Detecting densely arranged objects is challenging due to the lack of generic definitions and the feature coupling between nearby objects. This paper proposes mathematical definitions of the instance-level, image-level, and dataset-level object density by information theory, called Density Index (DI). The DI shows a high consistency with human perception, serving as a powerful guide for aerial object detection, including data assessment and detector customization. Under the guidance of the DI, we design a DeDet to enhance the detector's performance in detecting densely arranged objects. DeDet pursues accurate location for densely arranged objects by the Density-aware Label Assignment (DLA) and Density-aware Feature Extraction (DFE), conquering the heuristic that the sample assignment and feature extraction are performed independently for each object. Experiments on the DOTA-v1.0 and DOTA-v2.0 show that DeDet can bring a significant improvement to the baseline detector.
elib-URL des Eintrags: | https://elib.dlr.de/201606/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Zusätzliche Informationen: | The full paper is available at: https://dl.acm.org/doi/pdf/10.1145/3604078.3604120 | ||||||||||||||||||||||||
Titel: | Density-aware Object Detection in Aerial Images | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 26 Oktober 2023 | ||||||||||||||||||||||||
Erschienen in: | 15th International Conference on Digital Image Processing, ICDIP 2023 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1145/3604078.3604120 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-9 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Aerial images, Object detection, Density index, Feature extraction | ||||||||||||||||||||||||
Veranstaltungstitel: | ICDIP '23 | ||||||||||||||||||||||||
Veranstaltungsort: | Nanjing, China | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 19 Mai 2023 | ||||||||||||||||||||||||
Veranstaltungsende: | 22 Mai 2023 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Dumitru, Corneliu Octavian | ||||||||||||||||||||||||
Hinterlegt am: | 09 Jan 2024 15:29 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 21:02 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags