elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Shapelet based clustering and anomaly detection for compromised, noisy and missing multivariate time series

Fischer, Tobias Merlin (2023) Shapelet based clustering and anomaly detection for compromised, noisy and missing multivariate time series. Masterarbeit, Technische Universität Ilmenau.

[img] PDF
15MB

Kurzfassung

Multivariate time series (MTS) data are widely prevalent in various domains, including medical screening, system monitoring or astronomy, where each instance consists of multiple sequences with inherent temporal ordering. Detecting anomalies in MTS is a critical research area aimed at identifying time points or patterns that deviate from normal behaviour. The demand for not only detecting anomalies but also processing them representatively, has led to the development of shapelet-based anomaly detection methods, which offer both interpretability and accuracy for MTS analysis. Despite the increasing interest in anomaly detection methods, shapeletbased anomaly detection remains a relatively small research field. This thesis introduces a novel workflow for unsupervised shapelet-based anomaly detection and anomaly prototype identification in MTS data, combining established anomaly detection methods with a shapelet-based classification framework. To evaluate different shapelet detection techniques based on clustering and validate the effectiveness of the workflow, experiments were conducted on both synthetic and real-world telemetry datasets of an exploration greenhouse. It was found, that the proposed workflow successfully detected diverse anomaly types while demonstrating the shapelets interpretability, especially for the real-world case. Moreover, the potential to enhance anomaly detection appears to rely on the adapted weighting of cluster size and distance during shapelet selection and the issue of vanishing anomalies due to the Euclidean distance used for clustering.

elib-URL des Eintrags:https://elib.dlr.de/201532/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Shapelet based clustering and anomaly detection for compromised, noisy and missing multivariate time series
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Fischer, Tobias MerlinTechnische Universität IlmenauNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:18 Oktober 2023
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenanzahl:158
Status:veröffentlicht
Stichwörter:Anomaly Detection, Time Series, Shapelet, Clustering, Unsupervised
Institution:Technische Universität Ilmenau
Abteilung:Department of Computer Science and Automation
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - EDEN ISS Follow-on
Standort: Jena
Institute & Einrichtungen:Institut für Datenwissenschaften
Hinterlegt von: Rewicki, Ferdinand
Hinterlegt am:08 Jan 2024 13:42
Letzte Änderung:08 Jan 2024 13:42

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.