Li, Qingyu and Sun, Yao and Mou, LiChao and Shi, Yilei and Zhu, Xiao Xiang (2023) Semi-supervised segmentation of individual buildings from SAR imagery. In: 2023 Joint Urban Remote Sensing Event, JURSE 2023, pp. 1-4. JURSE 2023, 2023-05-17 - 2023-05-19, Heraklion, Greece. doi: 10.1109/JURSE57346.2023.10144210. ISBN 978-166549373-4. ISSN 2642-9535.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/abstract/document/10144210
Abstract
Buildings are essential geo-targets that contribute to the monitoring of urban development. Synthetic aperture radar (SAR) provides excellent opportunities for building segmentation as it is insensitive to sunlight illumination and weather conditions. Nevertheless, the majority of existing approaches that exploit convolutional neural networks (CNNs), need to collect an enormous quantity of annotations for network training. Therefore, we propose an innovative semi-supervised method for individual building segmentation from SAR imagery. Our approach has three modules: a weights-shared encoder, a main decoder as well as an auxiliary decoder. For unlabeled samples, given the perturbation added to the encoder’s output, we enforce the consistency between the feature and output of the auxiliary decoder and those of the main decoder. This allows for the use of abundant unlabeled samples to make up for a lack of supervisory information. The experiments are carried out on a SAR dataset that is collected from the city of Berlin, Germany. Quantitative and qualitative results suggest that our approach is superior to other competitors.
Item URL in elib: | https://elib.dlr.de/201209/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Semi-supervised segmentation of individual buildings from SAR imagery | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2023 | ||||||||||||||||||||||||
Journal or Publication Title: | 2023 Joint Urban Remote Sensing Event, JURSE 2023 | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
DOI: | 10.1109/JURSE57346.2023.10144210 | ||||||||||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||||||||||
ISSN: | 2642-9535 | ||||||||||||||||||||||||
ISBN: | 978-166549373-4 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Training, Image Segmentation, Perturbation methods, Buildings, Urban Areas, Training Data, Radar Polarimetry | ||||||||||||||||||||||||
Event Title: | JURSE 2023 | ||||||||||||||||||||||||
Event Location: | Heraklion, Greece | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 17 May 2023 | ||||||||||||||||||||||||
Event End Date: | 19 May 2023 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Zappacosta, Antony | ||||||||||||||||||||||||
Deposited On: | 10 Jan 2024 16:48 | ||||||||||||||||||||||||
Last Modified: | 10 Jul 2024 10:57 |
Repository Staff Only: item control page