Li, Qingyu und Sun, Yao und Mou, LiChao und Shi, Yilei und Zhu, Xiao Xiang (2023) Semi-supervised segmentation of individual buildings from SAR imagery. In: 2023 Joint Urban Remote Sensing Event, JURSE 2023, Seiten 1-4. JURSE 2023, 2023-05-17 - 2023-05-19, Heraklion, Greece. doi: 10.1109/JURSE57346.2023.10144210. ISBN 978-166549373-4. ISSN 2642-9535.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10144210
Kurzfassung
Buildings are essential geo-targets that contribute to the monitoring of urban development. Synthetic aperture radar (SAR) provides excellent opportunities for building segmentation as it is insensitive to sunlight illumination and weather conditions. Nevertheless, the majority of existing approaches that exploit convolutional neural networks (CNNs), need to collect an enormous quantity of annotations for network training. Therefore, we propose an innovative semi-supervised method for individual building segmentation from SAR imagery. Our approach has three modules: a weights-shared encoder, a main decoder as well as an auxiliary decoder. For unlabeled samples, given the perturbation added to the encoder’s output, we enforce the consistency between the feature and output of the auxiliary decoder and those of the main decoder. This allows for the use of abundant unlabeled samples to make up for a lack of supervisory information. The experiments are carried out on a SAR dataset that is collected from the city of Berlin, Germany. Quantitative and qualitative results suggest that our approach is superior to other competitors.
elib-URL des Eintrags: | https://elib.dlr.de/201209/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Semi-supervised segmentation of individual buildings from SAR imagery | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2023 | ||||||||||||||||||||||||
Erschienen in: | 2023 Joint Urban Remote Sensing Event, JURSE 2023 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/JURSE57346.2023.10144210 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||||||
ISSN: | 2642-9535 | ||||||||||||||||||||||||
ISBN: | 978-166549373-4 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Training, Image Segmentation, Perturbation methods, Buildings, Urban Areas, Training Data, Radar Polarimetry | ||||||||||||||||||||||||
Veranstaltungstitel: | JURSE 2023 | ||||||||||||||||||||||||
Veranstaltungsort: | Heraklion, Greece | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 17 Mai 2023 | ||||||||||||||||||||||||
Veranstaltungsende: | 19 Mai 2023 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Zappacosta, Antony | ||||||||||||||||||||||||
Hinterlegt am: | 10 Jan 2024 16:48 | ||||||||||||||||||||||||
Letzte Änderung: | 10 Jul 2024 10:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags