Ertmer, Markus Till (2023) Domain Shifts and Interpretability in AI-based Skin Cancer Diagnosis. Masterarbeit, Ernst-Abbe-Hochschule Jena.
PDF
3MB |
Kurzfassung
Explainability is crucial in order to build trust in AI applications and increase their acceptance, particularly in safety-critical environments. One such application is skin cancer classification, where dermatologists may use AI models as digital assistants for diagnostic purposes. In this work, the publicly available domain-separated ISIC-Archive dataset, comprised of melanoma and nevus image data, is examined. Initially, an inter-domain dataset is used to train a binary ResNet18 classifier and the Grad-CAM output is interpreted. Subsequently, the performance and Grad-CAM output of a binary classifier is investigated to understand how neural network activations change during domain shifts within the ISIC-Dataset. Thereafter, the established domain shift mitigation approaches - i.e. augmentation and DANN - are investigated regarding their influence on performance and neural network activations. Their effects on Grad-CAMElementwise output are furthermore quantitatively compared. The findings presented in this work, provide insights into the underlying reasons for unequal performance degradation during domain shift, shortcomings of Grad-CAM and influential factors of unsupervised domain adaptation. The results indicate a limited potential of Grad-CAM based explainability methods for building trust among dermatologists in domain-adapted ResNet models. Nevertheless, Grad-CAM based explainability methods have demonstrated their ability to identify failure modes of neural networks.
elib-URL des Eintrags: | https://elib.dlr.de/201143/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Hochschulschrift (Masterarbeit) | ||||||||
Titel: | Domain Shifts and Interpretability in AI-based Skin Cancer Diagnosis | ||||||||
Autoren: |
| ||||||||
Datum: | 19 Oktober 2023 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
Seitenanzahl: | 79 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Explainability, Interpretability, Domain Shifts, Domain Adaptation | ||||||||
Institution: | Ernst-Abbe-Hochschule Jena | ||||||||
Abteilung: | Department of Electrical Engineering and Information Technology | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Grundlagenforschung im Bereich Maschinelles Lernen | ||||||||
Standort: | Jena | ||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenanalyse und -intelligenz | ||||||||
Hinterlegt von: | Niebling, Julia | ||||||||
Hinterlegt am: | 22 Dez 2023 08:40 | ||||||||
Letzte Änderung: | 22 Dez 2023 08:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags