elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Domain Shifts and Interpretability in AI-based Skin Cancer Diagnosis

Ertmer, Markus Till (2023) Domain Shifts and Interpretability in AI-based Skin Cancer Diagnosis. Masterarbeit, Ernst-Abbe-Hochschule Jena.

[img] PDF
3MB

Kurzfassung

Explainability is crucial in order to build trust in AI applications and increase their acceptance, particularly in safety-critical environments. One such application is skin cancer classification, where dermatologists may use AI models as digital assistants for diagnostic purposes. In this work, the publicly available domain-separated ISIC-Archive dataset, comprised of melanoma and nevus image data, is examined. Initially, an inter-domain dataset is used to train a binary ResNet18 classifier and the Grad-CAM output is interpreted. Subsequently, the performance and Grad-CAM output of a binary classifier is investigated to understand how neural network activations change during domain shifts within the ISIC-Dataset. Thereafter, the established domain shift mitigation approaches - i.e. augmentation and DANN - are investigated regarding their influence on performance and neural network activations. Their effects on Grad-CAMElementwise output are furthermore quantitatively compared. The findings presented in this work, provide insights into the underlying reasons for unequal performance degradation during domain shift, shortcomings of Grad-CAM and influential factors of unsupervised domain adaptation. The results indicate a limited potential of Grad-CAM based explainability methods for building trust among dermatologists in domain-adapted ResNet models. Nevertheless, Grad-CAM based explainability methods have demonstrated their ability to identify failure modes of neural networks.

elib-URL des Eintrags:https://elib.dlr.de/201143/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Domain Shifts and Interpretability in AI-based Skin Cancer Diagnosis
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ertmer, Markus Tillmarkus.ertmer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:19 Oktober 2023
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenanzahl:79
Status:veröffentlicht
Stichwörter:Explainability, Interpretability, Domain Shifts, Domain Adaptation
Institution:Ernst-Abbe-Hochschule Jena
Abteilung:Department of Electrical Engineering and Information Technology
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Grundlagenforschung im Bereich Maschinelles Lernen
Standort: Jena
Institute & Einrichtungen:Institut für Datenwissenschaften > Datenanalyse und -intelligenz
Hinterlegt von: Niebling, Julia
Hinterlegt am:22 Dez 2023 08:40
Letzte Änderung:22 Dez 2023 08:40

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.