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Abstract 

Explainability is crucial in order to build trust in AI applications and increase their acceptance, 

particularly in safety-critical environments. One such application is skin cancer classification, 

where dermatologists may use AI models as digital assistants for diagnostic purposes. In this 

work, the publicly available domain-separated ISIC-Archive dataset, comprised of melanoma 

and nevus image data, is examined. Initially, an inter-domain dataset is used to train a binary 

ResNet18 classifier and the Grad-CAM output is interpreted. Subsequently, the performance 

and Grad-CAM output of a binary classifier is investigated to understand how neural network 

activations change during domain shifts within the ISIC-Dataset. Thereafter, the established 

domain shift mitigation approaches - i.e. augmentation and DANN - are investigated regarding 

their influence on performance and neural network activations. Their effects on Grad-CAM-

Elementwise output are furthermore quantitatively compared. The findings presented in this 

work, provide insights into the underlying reasons for unequal performance degradation during 

domain shift, shortcomings of Grad-CAM and influential factors of unsupervised domain 

adaptation. The results indicate a limited potential of Grad-CAM based explainability methods 

for building trust among dermatologists in domain-adapted ResNet models. Nevertheless, 

Grad-CAM based explainability methods have demonstrated their ability to identify failure 

modes of neural networks.  
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Abstract 

Erklärbarkeit ist entscheidend, um Vertrauen und Akzeptanz in KI-Anwendungen aufzubauen, 

insbesondere in sicherheitskritischen Umgebungen. Eine solche Anwendung ist die 

Klassifikation von Hautkrebs, bei der Dermatologen KI-Modelle als digitale Assistenten 

diagnostische Zwecke nutzen und deren Ergebnisse nachvollziehen möchten. In dieser Arbeit 

wird der öffentlich verfügbare, nach Domänen getrennte ISIC-Archive-Datensatz, der aus 

Bildern von Melanomen und Nävi besteht, untersucht. Zunächst wird ein mehrere Domänen 

umfassender Datensatz verwendet, um einen binären ResNet18-Klassifikator zu trainieren. Die 

Grad-CAM-Ausgabe wird anschließend interpretiert. Danach werden die Leistungsmerkmale 

und die Grad-CAM-Ausgaben eines binären Klassifikators untersucht, um zu verstehen, wie 

sich Aktivierungen des neuronalen Netzwerks während der Domänenwechsel im ISIC-

Datensatz ändern. Im weiteren Verlauf werden zwei etablierte Ansätze zur Minderung der 

Domänenverschiebung - Datenmanipulation und DANN - nach ihrem Einfluss auf 

Leistungsmerkmale und Aktivierungen des neuronalen Netzwerks untersucht. Ihre 

Auswirkungen auf die Grad-CAM-Elementwise Ausgabe werden außerdem quantitativ 

verglichen. Die in dieser Arbeit präsentierten Ergebnisse liefern Einblicke in die Gründe für die 

ungleiche Leistungsverschlechterung während der Domänenverschiebung, in verschiedene 

Unzulänglichkeiten von Grad-CAM und in die Einflussfaktoren der unüberwachten 

Domänenanpassung. Die Ergebnisse deuten auf ein begrenztes Potenzial von Grad-CAM-

basierten Erklärbarkeitsmethoden für die Schaffung von Vertrauen in domänenadaptierte 

ResNet-Modelle hin. Nichtsdestotrotz haben Grad-CAM-basierte Erklärbarkeitsmethoden ihre 

Eignung zur Identifizierung von Fehlermodi neuraler Netze unter Beweis gestellt.  
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1. Introduction  

Skin cancer poses a global health problem, with malignant melanoma (black skin cancer) 

standing out as the most lethal form within this category. The early diagnosis of malignant 

melanoma warrants the chance for complete recovery of the patient [1]. Distinguishing between 

malignant melanoma and a benign melanocytic nevus (mole) poses a considerable challenge. 

Therefore, the expertise of a proficient dermatologist is required for early diagnosis. However, 

the accuracy of the diagnosis is influenced by the experience of the involved dermatologist [2], 

[3]. Given the rising incidence of melanoma across many countries [4], reliable computer vision 

solutions promise the potential to assist in saving many lives.  

In addition to various patient specific factors, dermoscopic images represent the primary source 

of information for a dermatologist to eventually validate the malignance of skin lesions such as 

moles. These images allow the dermatologist to assess the microstructures of a patient’s 

epidermis [5]. Therefore, it appears logical and beneficial to train ai based models using 

comparable data that dermatologists utilize to formulate their diagnoses and determine whether 

to excise or retain a skin lesion. This approach theoretically enables software implementations 

to aid dermatologists in enhancing their diagnostic precision, leading to an overall improvement 

in accuracy.  

The broad adoption of AI-based skin cancer classification is held back by the limited 

generalization capability of skin cancer classification models [6]. Within the available 

dermoscopic image data, the generalization capabilities of Convolutional Neural Networks 

(CNNs) are tested on new domains. Consequently, a CNN capable of maintaining performance 

on the test dataset of another domain is considered to possess robust generalization capabilities.  

Conclusively, domain adaptation in skin cancer classification is a key aspect in the efforts to 

convey AI-based skin cancer classification into the clinic. Since CNNs inherently operate as 

black boxes, the underlying mechanisms of influential factors, leading to lower performance 

upon domain shift, remain unknown. Another crucial aspect for application in clinical diagnosis 

is the explainability of classifiers and their reliability. Establishing trust among dermatologists 

is essential for a wide use of AI-based software assistants.  
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1.1 Objectives 

To gain further insights into influential factors of domain shift and the behavior of explainability 

methods in domain shift scenarios, the following objectives are formulated.  

Neural network activations in the International Skin Imaging Collaboration (ISIC) -Dataset are 

analyzed during domain shifts to understand the causes of domain shift. Additionally, the 

changes of a neural network’s activation are examined as the domain is changed within the 

ISIC-Dataset, to observe generalization capabilities.  

After identifying the underlying reasons for domain shift, established mitigation approaches are 

investigated. The first approach is the augmentation of dermoscopic images. Its impact is 

investigated on both the classification performance and neural network activations. 

Subsequently, the most suitable saliency method for quantifying the impact of augmentation 

and domain adaptation on network activations is determined. 

This is followed by domain adaptation and the investigation of its impact on both the 

classification performance and neural network activations 

The influence of mitigation approaches on neural network activation is then quantitatively 

compared, to gain insights in the explainability of domain adapted models.  

2. Related Work 

In this chapter existing literature and relevant research is discussed to illustrate how the key 

points and employed methods of this work are integrated in research.  

2.1 Research on Dermoscopic Skin Cancer Classification 

A prominent initial publication addressing skin cancer classification with AI-based techniques 

was published in 2017 [7]. This study introduced the utilization of a pretrained GoogleNet 

Inception v3 CNN architecture for distinguishing nine different skin disease classes. 

Remarkably, the model's performance was on par with that of a dermatologist. To accelerate 

the ambition of enhanced achievements in classifying dermoscopic skin lesions, the ISIC-

Challenge [8] was established. Since a wide variety of Networks was deployed in the ISIC-

Challenges, efforts emerged to determine more suitable CNN architectures for this task. This 

led up to the development of ensemble learning [9], wherein multiple models are applied and 

their outcomes consolidated to obtain the final classification result.  

Other bounding aspects as dataset imbalance, the limited amount of labeled data in skin disease 

datasets and the inadequate cross-domain generalization capabilities of trained models have 

also been subject of exploration within publications [3].  
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Recent publications target the aforementioned aspects and try to contribute with an 

enhancement in one of these aspects [10]–[14].  

Residual Networks (ResNets) have found application in the realm of dermoscopic 

classification, as demonstrated in [15] and particularly have been investigated and compared to 

other CNNs for their transfer learning capabilities in skin cancer classification with convincing 

results [16]. 

2.2 Saliency as Explainability and the Role of Grad-CAM 

In implementing CNNs in safety critical tasks like skin lesion classifications, the acceptance of 

the models among the medical community depends on explaining the model's decisions. In the 

case of image classification tasks, it is advisable to consider a visualization strategy that mirrors 

human assessment methods, similar to those used in generating saliency maps [17]. Early 

publications retrieved the pixel importance solely by backpropagation through the CNN [18]. 

The success of Grad-CAM [19] as a saliency method led to the emergence of several other 

approaches based on Grad-CAM such as HiResCAM [20], Grad-CAM++ [21] and FullGrad 

[22], to name just a few instances.  

Since its publication, Grad-CAM has found extensive usage in the scientific field. For instance, 

it was employed to highlight areas of brain MRI-scans [23]. Beyond its medical applications, 

Grad-CAM was also applied in explaining domain adaptation and exploring generalization 

capabilities of DNNs while directly factoring saliency output into the model’s training [24].  

Grad-CAM has additionally found application in quantification tasks, assessing similarity 

between human saliency and neural network attention [25]. The quantification metrics 

employed are those proposed by Boggust et al. [26], some of which will be also used in this 

work.  

2.3 Domain Adaptation in Dermoscopic Datasets (Augmentation vs DANN) 

The most relevant study is a publication [10], which identified and quantified domain shifts 

within the ISIC-Dataset. This dataset, comprising separated domains and quantified domain 

shifts, builds a foundation for this work. The research further suggests that employing 

techniques like data augmentation or domain adaptation may offer potential solutions for the 

issue of domain shifts. The authors focused on unsupervised domain adaptation to demonstrate 

that the effects of the identified domain shifts can be impaired. The architecture they employed 

featured a ResNet50 model, utilized as a feature extractor within the framework of DANN. By 

evaluating DANN’s AUROC performance across the identified domains, the study highlighted 

DANN’s capability to enhance performance across the majority of domains [10]. 
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Figure 1: Effect of DANN in combination with ResNet50 on classification performance across domains inside the 

ISIC-Dataset [10] 

While the authors could identify the domains in the data structure based on meta-data, they did 

not provide a definitive explanation of these shifts on image level. This work aims to contribute 

to this particular research field by addressing this gap.  

2.4 Segmentation in AI-based Skin Cancer Classification  

Segmentation represents a valuable tool for quantification purposes. The 2018 ISIC challenge 

[8] evaluated dermoscopic segmentation algorithms based on labeled training images and 

masks. For this challenge a dataset with 2594 images was provided with the according 

segmentation masks which were created by medical professionals. The leading submission 

achieved 0.82 Intersection over Union (IoU) on the test set. Subsequently, various attempts 

tried to further optimize performance on this task, like Bi-Directional ConvLSTM U-Net with 

Densely Connected Convolutions (BCDU-Net) [27]. With a Jaccard-Score (IoU) of 0.937 on a 

comparable test-dataset BCDU-Net surpasses the performances of the earlier proposed U-Net 

and the ISIC-Challenge winner.  

It is important to highlight that the ground truth masks occasionally contain linear borders. 

Given the scarceness of linearly delimited skin lesions, one could argue that the ground truth 

sometimes wasn’t prepared with the necessary conscientiousness.  

This leaves room for interpretation. In this context, BCDU-Net segmentation masks might be 

regarded to represent the ground truth. Based on this assumption, the skin lesion segmentation 

masks generated by BCDU-Net could be employed for quantifying Grad-CAM output. In 

addition, a quantitative comparison of Grad-CAM and statistical results becomes possible.   
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3. Technical Background 

In this chapter relevant technical fundamentals are presented, which are required for 

comprehension of the later presented methods and appraising the results. 

3.1 The ResNet Architecture 

The ResNet architecture [28] is primarily applied in CNNs, dedicated to image recognition. It 

was proposed in 2015 and since then found great resonance in the scientific community [29]. 

The different ResNet models are available in several levels of complexity. Today, networks 

between 18 and 152 layers are available inside the PyTorch framework. In skin cancer 

classification there have been various uses of this architecture to process image data [10], [30], 

[31]. 

The main problem this residual approach addresses is the vanishing gradient problem, which 

was first described by Hochreiter [32]. During backpropagation in deep neural networks this 

problem leads to a gradient which approaches zero for the early layers of the model. Therefore, 

the model is learning slowly and eventually does not exhibit adequate test results.  

One layer of a ResNet18 model consists of two building blocks. Each block receives an input 

x that is introduced to a weight layer (see Figure 2). The Rectified Linear Unit (ReLU) function 

is applied along with repeated weighting. Finally, the initial input is added to the output of the 

second weight layer [28]. This shortcut connection enables gradients to directly flow backwards 

to the early layers of the model during backpropagation [33]. 

This leads to ResNet models exhibiting superior performance compared to traditional plain 

CNNs with same size and same number of training iterations [28]. 

 

 

 

Figure 2:ResNet architecture building block [28] 
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Figure 3:ResNet architecture with layers that contain building blocks [33] 

In this work, a pretrained ResNet18 model is being used as a classifier and feature extractor. 

The ResNet18 model has 18 layers which form 5 Blocks (see Figure 3). These 5 blocks consist 

of a different number of layers depending on the chosen ResNet model. Dimensionality is 

maintained inside each block, because the padding is 1, kernel width and height is 3. The output 

size is determined by equation 1.  

𝑂𝑠𝑖𝑧𝑒 =
𝐼𝑠𝑖𝑧𝑒+2∗𝑃−𝐾

𝑆
+ 1 → 𝑂𝑠𝑖𝑧𝑒 =  

𝐼𝑠𝑖𝑧𝑒+2−3

1
+ 1 = 𝐼𝑠𝑖𝑧𝑒 [34]     (1) 

Osize = output size; Isize = input size; P= padding; K = kernel size; S = stride  

Most convolutional layers of the ResNet architecture contribute to the extraction of the relation 

of the neighboring features. However, the characteristic shortcuts between the layers make the 

learning process significantly more effective with ResNet models of higher complexity. Even 

though this benefit is marginal when using the ResNet18 model, it offers comparably solid 

results with a low number of operations.  

To increase effectiveness a Transfer Learning approach, that is available inside the PyTorch 

framework, is used for training the ResNet18 model. More specifically, a pretrained ResNet 

model can be loaded with weights that were obtained by training on the ImageNet-1K dataset.  

3.2 Saliency Methods 

3.2.1 Grad-CAM 

The Gradient-weighted Class Activation Mapping aims to create pixel intensity maps that can 

highlight failure modes, dataset bias and class specific features of CNNs [19]. Failure modes 

simply describe in what way a CNN fails. In concrete terms, Grad-CAM creates a saliency map 

for a CNN, later also referred to as Class Activation Map (CAM) or simply activation. The 

Grad-CAM visual explanation technique was proposed in 2016. For this work, the most popular 
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GitHub 1Grad-CAM implementation by Jacob Gildenblat [35] was used. The implementation 

features several different diversifications of the original Grad-CAM.Grad-CAM can only be 

applied to networks that contain convolutional layers, since only convolutional layers retain 

spatial information which is lost in fully connected layers. Grad-CAM is usually applied to the 

last convolutional layer of a model, since this layer contains high level features and usually 

highlights cohesive regions in the image. When applied to the last convolutional layer, Grad-

CAM uses the gradient information that is fed into the last convolutional layer of the CNN [19].  

 

Figure 4:Grad-CAM principle [19] 

As visible in the schematic in Figure 4, an image is fed forward through the network and the 

corresponding class is assigned. As shown in Figure 4, Grad-CAM sets the gradient of the target 

class “Tiger Cat” to 1 and the other classes are forced to 0. This is followed by a 

backpropagation through the network until the chosen target layer. At this target layer the class-

discriminative localization map is computed.  

First the neuron importance weights α for the target class c and each feature map k are 

calculated. Summing over height and width of the feature map and dividing by the number of 

features is also referred to as global average pooling. This results in an average gradient for 

every feature map in the target layer [34]. 

𝛼𝑘
𝑐 =  

1

𝑍
∑ ∑  

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘𝑗𝑖  [19]         (2) 

Whereas i and j are height and width of the feature map and Z the number of features. A 

represents the matrix of the feature map activations.  

 

 

                                                 
1 https://github.com/jacobgil/pytorch-grad-cam 
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Second, the class-discriminative localization map is computed by multiplying the average 

gradient with the feature map activations before summing over all feature maps [19]. 

𝐿𝐺𝑟𝑎𝑑𝐶𝐴𝑀
𝑐 =  𝑅𝑒𝐿𝑈(∑  𝛼𝑘

𝑐  𝐴𝑘
𝑘 )  [19]       (3.1) 

The ReLU ensures that the values of 𝐿𝐺𝑟𝑎𝑑𝐶𝐴𝑀
𝑐  are positive [19] 

3.2.2 Grad-CAM-Elementwise 

The Grad-CAM Git-Hub repository 2offers various other saliency methods. One of these is 

Grad-CAM-Elementwise [35], which essentially represents an extension of HiResCAM, which 

in itself is an extension of Grad-CAM. 

In the following section, HiResCAM and its difference to Grad-CAM shall be outlined. The 

functional principle is similar to Grad-CAM, but the feature map activations and the gradients 

are multiplied elementwise. The main concern about Grad-CAM, that the HiResCAM 

publication expounds is the use of the average gradient, that is multiplied with the feature map 

activations. The authors visualized the problem in Figure 5 [20].  

It is evident that Grad-CAM relies more on the feature map values in its final representation. 

 

 

 

Figure 5: Difference between HiResCAM and Grad-CAM in 2D perspective [20] 

 

 

                                                 
2 https://github.com/jacobgil/pytorch-grad-cam 
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Mathematically, HiResCAM is described as a matrix of the gradient of the score y for class c 

with respect to feature map activations elementwise multiplied with the feature map matrix 

[20].  

𝐿𝐻𝑖𝑅𝑒𝑠𝐶𝐴𝑀
𝑐 = ∑  

𝜕𝑦𝑐

𝜕𝐴𝑘
⊙ 𝐴𝑘

𝑘   [20]        (3.2) 

Grad-CAM-Elementwise is only an additional Saliency Method implementation in the Grad-

CAM GitHub repository. Since it is described as an elementwise multiplication of the 

activations with the gradients to which ReLU is applied before summing [35]. It is 

Mathematically seen as: 

𝐿𝐺𝑟𝑎𝑑𝐶𝐴𝑀𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑊𝑖𝑠𝑒
𝑐 = ∑  𝑅𝑒𝐿𝑈 (

𝜕𝑦𝑐

𝜕𝐴𝑘 ⊙ 𝐴𝑘)𝑘        (3.3) 

As a result of ReLU, the product of an element is negative it gets set to zero. While summing 

over all the feature maps inside the target layer, those negative values are blocked from 

contributing to the result. Consequently, feature maps or gradient matrices with mostly negative 

gradients have low impact on the final class-discriminative localization map.  

If the feature map Af in Figure 5 and the corresponding gradients are multiplied in the way that 

equation 3.3 specifies it, the result would be alike the matrix in Figure 6. 

 

Figure 6: Respective 2D Result for Grad-CAM-Elementwise (created with draw.io) 

3.3 Augmentation of Datasets in Machine Learning 

Data augmentation is a prevalent technique in machine learning aimed at mitigating overfitting 

during the training of models [36]. In the context of image data, various augmentation methods 

are employed, comprising geometric transformations, color space conversions, kernel-based 

filters, image erasure, and image blending. Additionally, synthetic data generation by 

generative models can prove useful when dealing with datasets primarily composed of natural 

images [37]. Data augmentation has already found utility within medical image datasets, 

particularly for achieving domain adaptation objectives. Beyond the scope of geometric 

augmentation, dataset specific augmentation techniques [38], [39] have been explored in 

various works. This specifically also features the removal and adding of artifacts. Data 
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augmentation positively contributes to the robustness of trained models, consequently 

facilitating improved generalization performance. Notably, Tesla employs dataset 

augmentation to increase the robustness of their Autopilot systems with a patented approach 

[40], [41]. While data augmentation not inherently being a domain adaptation method, it is 

evident to hypothesize that models showcasing notable generalization capacity also exhibit an 

ability to perform well on unseen domains. 

3.4 Domain Adaptation with DANN 

In the realm of machine learning, domain adaptation is a sub-field that aims at aligning the 

discrepancy across the domain data distribution to generalize a trained model into the domain 

of interest [42]. In a broader sense, domain adaptation is also a special variant of transfer 

learning, since already gathered knowledge is used to enhance performance on a closely related 

task. 

For domain adaptation there are at least two domains that contain a discrepancy in their data, a 

source domain and a target domain. Usually, the source domain contains labeled data that a 

model was initially trained on. Domains are comprised of three components. A feature space, 

label space and their associated probability distribution. Feature space is a subset of a 

multidimensional space [42].  

In case of image data, this data is equivalent to the entirety of the feature maps of one layer of 

a CNN e.g. ResNet. In case of ResNet18, a vector with the size 1x1x512 is retrieved after 

average pooling [28]. Statistical methods like t-Distributed Stochastic Neighbor Embedding (t-

SNE) can reduce the dimensionality of this vector. By that, the information contained inside an 

image is represented as a coordinate in a two-dimensional feature space, as shown in Figure 7.  

 

Figure 7: Domain adaptation effect of the trained feature extractor on the image data. Here represented by t-SNE 

visualization of the feature extractors output. Blue dots represent SYN NUMBERS, red dots represent SVHN 

samples.  [43] 
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The label space is comprised of the number of classes contained inside the domain. The 

probability distribution describes the probability that an instance inside the data, e.g. an image, 

has a label y when it is located at point x somewhere in the feature space [42].  

Domain shift describes the change of the data distribution between the source- and target 

domain [44]. For this work, only the type of unsupervised domain adaptation plays a role. Here 

the source domain contains labeled training data whereas the data inside the target domain is 

unlabeled.  

In Figure 7, the effect of DANN on the data distribution can be observed with the Synthetic 

Digits (SYN Numbers) and the Street View House Numbers (SVHN) datasets. After domain 

adaptation, images of the target domain share a similar feature space to the source domain 

images. Thus, they should be easier to identify with knowledge that is restricted to the source 

domain.  

DANN, which was used to realize the domain adaptation in this work, fits inside the scope of 

deep domain adaptation and is one of the most well established domain adaptation 

approaches[45]. 

DANN has already been used in domain adaptation for skin cancer classification and 

demonstrated  promising results [10]. 

The fundamental idea behind DANN is to align the feature spaces of the source and target 

domains. If the features from both domains are indistinguishable, they can be considered similar 

or equal. As a consequence, a classifier that bases its prediction on source domain features 

should exhibit comparable performance for source and target domain. The functional principal 

is outlined in Figure 8 [43].  

 

Figure 8: Proposed DANN architecture [43] 
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The mentioned features are derived from the abstraction of image data. Since the application is 

image classification, the label predictor aims to classify the image based on the features, that 

the feature extractor, e.g. ResNet, outputs. Additionally, the output of the feature extractor is 

passed to the domain classifier. The domain classifier distinguishes to which domain the 

features correspond to. Since the architectural aim here is to bring the feature spaces of the two 

domains into alignment, a gradient reversal layer is introduced between the feature extractor 

and the domain classifier. The function of the gradient reversal layer is to invert the gradient 

associated with the loss of the domain classifier during the backward propagation phase [43].  

Consecutively, the feature extractor is influenced to optimize its parameters according to the 

reversed domain classifier loss and the label predictor loss. In concrete terms, a correct label 

prediction and an incorrect domain classification of image features generates minimal loss for 

the feature extractor.  

3.5 Segmentation with BCDU-Net 

Segmentation is necessary to obtain Ground truth saliency maps for large scale datasets without 

the expert knowledge of a dermatologist. Later on, saliency maps will be quantified in terms of 

their meaningfulness based on the overlap with the actual skin lesion. In this work image 

segmentation is performed using the BCDU-Net [27] with the aim of saliency quantification. 

BCDU-Net is based on U-Net [46], which was widely use in medical image segmentation [47].  

Initially introduced in 2015, the U-Net architecture was designed specifically for the task of 

biomedical image segmentation. At its core, the U-Net architecture consists of three key 

components: an encoder, a bridge, and a decoder. The encoder component comprises a series 

of convolutional layers, responsible for iteratively reducing the spatial dimensions of the input 

image. The bridge serves to connect the encoder and decoder components. The decoder is 

comprised of deconvolutional layers which increase spatial resolution as well as reducing 

number of channels. The final output shares the same resolution as the input image, with each 

pixel being assigned a specific class label. Segmentation tasks require the model to capture both 

high-level features, such as identifying objects, and low-level features, like detecting edges. 

Due to the challenge of simultaneously capturing these features while reducing spatial 

dimensions, it becomes obligatory to propagate high-resolution spatial information from the 

initial layers to the deepest layers. This is where the U-Net's copy and crop mechanism becomes 

significant, as it directly introduces high resolution information to the deepest layers. This 

mechanism enables the achievement of high-resolution segmentation, allowing for the precise 

delineation of complete objects [46]. 
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Figure 9: BCDU-Net architecture [27] 

The Bi-directional Convolutional Long Short-Term Memory U-Net with Densely Connected 

Convolutions is a fusion of Convolutional Long Short-Term Memory (ConvLSTM) and U-Net 

architectures, incorporating densely connected convolutions within the bridge component of 

the U-Net framework. This architecture operates similarly to U-Net with the distinctive feature 

of the Bi-directional ConvLSTM layer intersecting the copy paths of the original U-Net (see 

Figure 9). By introducing these architectural augmentations, the BCDU-Net demonstrates 

enhanced segmentation precision alongside accelerated computation, primarily facilitated by 

the integration of batch normalization [27].  

3.6 Statistical Metrics 

3.6.1 Binary Classifier Metrics F1-Score, Specificity, Sensitivity 

When characterizing the effectiveness of a binary classifier, in addition to accuracy, there are 

several other metrics that are of high significance. 

Sensitivity, denoted as the probability for a positive sample being recognized as such and is 

formally defined as: 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑎

𝑎+𝑏
 [48]      (4) 

a represents the number of true positive classifications, whereas b represents the number of 

false negative classifications. 

Specificity, regarded as the probability for a negative sample being recognized as such and is 

formally defined as: 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑑

𝑑+𝑏
 [48]      (5) 

Here, d stands for the count of false positive classifications.  
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The F1-Score measures the classification performance in cases of imbalanced test data.  

It is formally defined as: 𝐹1 =
2𝑎

2 𝑎+𝑏+𝑐
 [48]      (6) 

3.6.2 Similarity Metric: Jaccard Index (IoU), wIoU 

To quantify the similarity between two entities A and B, the Jaccard Index serves as an 

appropriate tool. The Jaccard Index is also known as Intersection over Union, which directly 

descibes the matematical essence of its concept.  

𝐽(𝐴, 𝐵) =  
|𝐴∩𝐵|

|𝐴∪𝐵|
=

|𝐴∩𝐵|

|𝐴|+|𝐵|−|𝐴∩𝐵|
 [49]       (7) 

The weighted Intersection over Union (wIoU), employed in this work, is not be confused with 

the weighted Jaccard similarity, which is applicable to two vectors. 

𝑤𝐼𝑜𝑈(𝑥, 𝑦) =
∑  𝑥𝑖∗𝑦𝑖𝑖

∑  𝑥𝑖+𝑦𝑖− 𝑥𝑖∗𝑦𝑖𝑖
 ≠ 𝐽𝑤(𝑥, 𝑦) =

∑ min( 𝑥𝑖 ,   𝑦𝑖)𝑖

∑ max( 𝑥𝑖 ,   𝑦𝑖)𝑖
 [49]          (8), (9) 

With x, y representing vectors with i elements ∀ 𝑥𝑖, 𝑦𝑖 ∈ ℝ ≥ 0 

The wIoU can be regarded as the ratio of the cumulative weighted computation of overlap 

(numerator) and union (denominator) across all elements. This calculation considers the 

elementwise interaction of these weighted values.  

Weighted IoU is necessary for adequately quantifying the output of a saliency method, since 

these values are not binary. Utilizing the conventional IoU metric in this context would 

introduce a new challenge of determining an appropriate threshold for binarization. However, 

incorporating the importance of each element within a saliency heatmap would produce results 

that closely correspond to the attention of the CNN.  
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4. Methods:  

4.1 Classification of Skin Lesions with a Pretrained ResNet18 

The classification aims at discerning melanoma and nevus images. This classification solely 

relies on the image data without using contextual patient information. The most notable system 

characteristics for the classification algorithm are Python 3.9, PyTorch 1.13.1 and ScikitLearn 

1.2.1. If not separately specified, the Python and PyTorch dependencies were always utilized 

for all methods. The seed for reproducibility was 0 for PyTorch and NumPy.  

In terms of architecture, a pretrained ResNet18 model was employed as a classifier and 

subjected to a training spanning 10 epochs. The final layer of this architecture consists of two 

output neurons for the binary classification task. The output tensor contains two float values, 

which is then passed to the torch.max function. This yields the index of the highest value, which 

represents the output neuron with the highest activation and therefore completes the 

classification process.  

In this work, diverse datasets were applied. A big subset of the ISIC- Dataset , spanning over 

multiple domains [50] and later referred to as the inter-domain dataset, as well as domain-

specific ISIC datasets, [51]–[53]. These datasets were utilized in various classification 

experiments as depicted in Figure 10. Notably, the primary classification of skin lesions was 

conducted with models that were trained on the same dataset as they had been tested on. Domain 

adaptation was investigated in two different ways. In the first approach, one source domain 

provided the training data for a model, which was subsequently tested on the test sets of all 

other ISIC domains. In this context, dataset augmentation and DANN were inspected for their 

domain adaptation capabilities. The second approach involved training a model for each 

available ISIC domain on the respective domain-specific training dataset. The resulting 

numerous models were tested on their corresponding testing dataset before their domain 

adaptation behavior was assessed on the Human Against Machine (HAM) loc body test set. 

Additionally, the impact of an augmented test dataset was investigated.  

During preprocessing, all images underwent normalization. The reason behind the 

normalization is the faster convergence with better and stable results [54]. 

For training, the PyTorch cross-entropy loss function and an optimizer using Stochastic 

Gradient Descent (SGD) was applied.  
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Figure 10: Overview of Classification Experiments (created with draw.io) 

The classification process, depicted in Figure 11, commenced with the loading of ISIC image 

data. The ISIC-Dataset was loaded using the DataLoader function in PyTorch. Detailed 

information on accessing data within the domain structure will be provided in a subsequent 

subsection of this chapter. For the inter-domain ISIC-Dataset, image labels were available. The 

training dataset used for the presented results comprises 14,791 images, including 3,812 

melanoma and 10,979 nevi samples. If training had already been conducted, a pre-trained model 

could be loaded with respective parameters. Otherwise, the training algorithm had to be applied 

as illustrated in Figure 11. 

The training process involved iterating over the available training data, which is divided into 

batches, for a predefined number of epochs. During each iteration, batches were fed into the 

model, and the batch loss was calculated by comparing the model's classifications to the image 

labels. The training progress was surveilled by plotting this loss. Gradients were computed 

based on this loss, which guided the optimization of model parameters. Upon completion, the 

model parameters were saved. Loading the model for testing requires the exact same network 

architecture used during training. 
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Figure 11: Flowchart of the employed training process (right) and the classification algorithm(left)  

(created with draw.io) 

Subsequently, validating the model on the holdout test data of the training set was necessary to 

evaluate the actual performance of the model.  

After the model had been examined for training success, testing the model on the desired dataset 

was used to exactly determine which images were classified correctly or incorrectly. From this 

information a confusion matrix could be derived.  
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4.2 Grad-CAM for Dermoscopic Datasets 

To utilize Grad-CAM on specific images, several prerequisites had to be 

fulfilled. Firstly, a trained classification model needed to be chosen. 

Secondly, the input data, represented by an image along with its true 

classification label, needed to be available. Knowing the image’s predicted 

class was crucial for identifying disparities between correct and incorrect 

image classifications. Hence, the correct and wrong classifications were 

saved in separate data subsets. This was essential for later analysis. The most 

notable system characteristics of this Grad-CAM implementation are 

Torchvision 0.14.1, NumPy 1.24.0, Pytroch-Grad-CAM 0.2.1 and OpenCV-

Python 4.7.0.68. 

The two subsets, previously generated during the classification process, were 

fed through the network. The resulting activations in the target layer of 

ResNet18 were utilized by Grad-CAM to create individual saliency maps for 

each image. An essential preprocessing step involved the denormalization of 

the images that were to be plotted. Otherwise the images would have occurred 

excessively dark and would not have been suited for human perception.  

Grad-CAM continued to operate on the normalized version of the image. The 

target class, for which Grad-CAM activations were displayed, corresponds to 

the model’s classification output. To visualize the results, the Matplotlib 

Python library was employed to create image matrices for each subset.  

Up to 40 images were fed to the Grad-CAM algorithm for each subset to gain 

a comprehensive overview of the activation patterns. For quantification 

purposes, Grad-CAM was applied to the whole test dataset to obtain 

representative values.  

 

 

 

 

 

 

 

 

Figure 12: 

Flowchart of the 

Grad-CAM 

implementation 

(created with 

draw.io) 
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4.3 Accessing the Domain Data Structure 

In this section, the implementation of accessing the domain data structure 

presented in Table 1, which was proposed by Fogelberg et al. [10], will be 

elaborated. The most notable system characteristics are Torchvision 0.14.1, 

NumPy 1.24.0 and ScikitLearn 1.2.1. 

To access the data of one particular domain, it was essential to define the 

desired domain and its corresponding parameters. This was accomplished by 

reading a Comma-Separated Values (CSV)-file or manually specifying the 

parameters. The parameters included batch size, folder paths and file names. 

Subsequently the datasets were split into train and test sets. The source path 

was determined using the previously defined parameters along with the 

available metadata. From this source path the images were then loaded via the 

matplotlib imread function. At this stage, various image transformations were 

applied, depending on the experiment. Image normalization was always 

performed in this process. Finally, the PyTorch DataLoader was utilized 

which employed a weighted random sampler to obtain an equal number of 

images for both classes, while dividing them into batches. The random 

sampler’s purpose was mitigating class imbalance and its application usually 

resulted in the repeated loading of melanoma images, since it is the 

underrepresented class in the majority of datasets. This data-loading 

procedure was applied in all experiments that are depicted in Figure 10.  

 

Table 1: Overview of the examined ISIC domains [10] 

Origin Biological factors Melanoma 
amount 

Nevus 
amount 

Total target 
size 

HAM Age >30, Loc. = Body (default) 465 (10%) 4234 (90%) 4699 

HAM Age ≤ 30, Loc. = Body 25 (4%) 532 (96%) 557 

HAM Age >30, Loc. = Head/Neck 99 (45%) 121 (55%) 220 

HAM Age >30, Loc. = Palms/Soles 15 (7%) 203 (93%) 218 

BCN Age >30, Loc. = Body (default) 1918 (41%) 2721 (59%) 4639 

BCN Age ≤ 30, Loc. = Body 71 (8%) 808 (92%) 879 

BCN Age >30, Loc. = Head/Neck 612 (66%) 320 (34%) 932 

BCN Age >30, Loc. = Palms/Soles 192 (65%) 105 (35%) 297 

MSK Age >30, Loc. = Body (default) 565 (31%) 1282 (69%) 1847 

MSK Age ≤ 30, Loc. = Body 37 (8%) 427 (92%) 464 

MSK Age >30, Loc. = Head/Neck 175 (60%) 117 (40%) 292 

Figure 13: Flowchart 

of the domain access 

process (created with 

draw.io) 
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4.4 Augmentation of Dermoscopic Images 

As mentioned earlier, image augmentations significantly impact the resulting model’s 

performance. Augmentation was applied to both the HAM loc body domain as the target 

domain and for HAM loc body as the source domain. Specifically, the target domain 

augmentation was achieved by solely augmenting the test set of the target domain, while the 

source domain augmentation involved augmentation of both the source domain’s training set 

and the target domain’s test set. The applied augmentations differed in those two scenarios. In 

the case of HAM loc body as the target dataset, the primary goal of augmentation was to 

eliminate a geometric bias inside the nevus class, which had been observed during the 

experiments. In this scenario, geometric augmentations were exclusively applied to nevus 

images using Torchvision transformation functions, because no bias has been discernible in 

melanoma samples. Specifically, a random crop of 315 pixels in height and 420 pixels in width 

was applied first [55]. While maintaining the original image’s aspect ratio, this augmentation 

function randomly selected a 315x420-pixel area inside the skin lesion image. As a result, 

features or objects located in the image’s peripheral areas were randomly excluded from the 

augmented image, forcing the model to focus on the skin lesion. Subsequently, the image was 

flipped horizontally or vertically with a respective probability of 0.5 for the execution of the 

transformation [56], [57]. The image was then resized to the original scale of 450x600 pixels 

using the bilinear interpolation with antialiasing enabled [58]. Consequently, objects or features 

within the image were relocated while maintaining the original image size.  

Resizing to a lower resolution of 224x224 pixels and therefore altering the aspect ratio was an 

additional option to avert learned patterns that are associated with image size and aspect ratio, 

like frame-patterns. This however negatively affects performance since the model is confronted 

with lower resolution images although it was trained on higher resolution images. In tasks, 

which aim to maximize performance, resizing of the test images was not an option.  

In the final step, the Torchvision normalize function was applied to both nevus and melanoma 

images. Normalization involved standardizing each color channel of a red, green and blue 

(RGB)-format image, represented by a float input tensor with values in the range [0;1], to fit 

the values in a range of [-1;1]. Since the Torchvision normalize function is defined as: 

𝑜𝑢𝑡𝑝𝑢𝑡 =
𝑖𝑛𝑝𝑢𝑡−𝑚𝑒𝑎𝑛

𝑠𝑡𝑑
  [59]       (10.1) 

 

With std representing the standard deviation, while mean and std being manually specified as 

0.5. 
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The results for the maximum or minimum values were derived like this: 

𝑜𝑢𝑡𝑝𝑢𝑡𝑚𝑎𝑥 =
1−0.5

0.5
= 1        (10.2) 

𝑜𝑢𝑡𝑝𝑢𝑡𝑚𝑖𝑛 =
0−0.5

0.5
= −1        (10.3) 

This transformation was essential since pretrained ResNet models rely on normalized values, 

distributed across a small negative and positive range. Otherwise, the transfer learning approach 

of ResNet would add limited benefit to the training process. 

It is common practice to augment the underrepresented class within a dataset in combination 

with a weighted sampler to mitigate class imbalance. Therefore, additional augmentation was 

applied on HAM loc body as the source dataset, to address the underrepresentation of 

melanoma. In this scenario, all the previously mentioned Torchvision functions were also 

applied to the melanoma images, except for random cropping. As illustrated in Figure 18, 

melanoma images typically cover a larger area in the images, and cropping could result in the 

loss of crucial information. The images were resized to 224x224 pixels to precisely match the 

standard input size of ResNet18. Otherwise, an AdaptiveAvgPool Layer of ResNet18 adjusts 

the output size of the network’s Layer4 to the desired ResNet18 size [60]. Resizing during 

preprocessing was viable since the augmented data was utilized to train a new model in this 

scenario.  

4.5 Implementation of DANN 

 

Figure 14: Layer dimension representation of the implemented DANN architecture with a ResNet18 Backbone 

(created with draw.io) 
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The implementation details of the previously described DANN principle are explained in this 

section.  

The DANN architecture employs multiple networks for unsupervised domain adaptation. A 

feature extractor, referred to as the "backbone" network, is a crucial component. In this context, 

the ResNet18 has been chosen to maintain comparability to the augmentation approach (see 

Figure 14). Therefore, the DANN architecture specified in this DANN GitHub 3implementation 

[61] was modified to process ISIC image data. The classifier was comprised of fully connected 

layers. Likewise, the Discriminator received the same ResNet18 output and utilized 

LeakyReLU activation functions. LeakyReLU is used to gauge negative activations instead of 

completely disregarding them. Ultimately, the Discriminator was utilized to distinguish 

between the domains via a sigmoid activation function at the output neuron. The classifier 

applied a softmax at the output layer, with a number of output neurons corresponding to the 

number of classes. 

The Classification workflow was similar to the previously described classification with 

ResNet18. However, there were specific training process details, which were crucial for the 

DANN implementation, as illustrated in Figure 15. Each batch consisted of images from both 

domains, which were fed through the feature extractor, generating feature vectors. All vectors 

were then passed to the discriminator along with the corresponding domain label. Subsequently, 

backpropagation was performed through the discriminator, calculating its loss and the 

gradients. In parallel, only the feature vectors of the source domain were being passed to the 

classifier for the computation of its loss and gradients, since class labels were not provided for 

the target domain. A total loss was then calculated from the discriminator and classifier losses. 

Due to the predefined gradient reversal, an epoch-dependent factor lambda was used to gauge 

the subtraction of the discriminator loss from the classifier loss. With all losses and gradients 

available, parameter optimization was performed. 

 

  

                                                 
3 https://github.com/Yangyangii/DANN-pytorch/blob/master/DANN.ipynb 
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Figure 15: Flowchart of the DANN training process (created with draw.io) 
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4.6 Implementation of BCDU-Net  

For the purpose of saliency quantification, the ISIC samples inside the domains had to be 

segmented first. Given that BCDU-Net therefore served as the foundation for quantification, an 

explanation of its implementation is necessary. The BCDU-Net was implemented following the 

GitHub 4repository by Reza Azad [62]. Minor adjustments were made to address deprecated 

libraries. Notable system characteristics are Tensorflow 2.12.0, Keras 2.12.0, NumPy 1.23.5 

and ScikitLearn 1.2.2.  

The BCDU-Net implementation for skin lesions is comprised of three main phases, preparation, 

training and evaluation. During the preparation phase, the ISIC 2018 Challenge training data 

[8] was prepared for training. This dataset consists of dermoscopic images and their 

corresponding ground truth binary segmentation masks, created by professional dermatologists. 

First the images were read from the dataset using the imageio read function. After resizing, 

these images were systematically appended to a NumPy array. The same procedure was applied 

to the segmentation masks. Subsequently, the resulting NumPy data-frames were partitioned 

into training, validation and test sets. Upon completion of partitioning, the resulting six data 

frames were saved to the system.  

During the training phase, the image data frames were normalized based on the mean and 

standard deviation computed from the NumPy data frame. Additionally, the dimensionality of 

the mask data was expanded to align with the RGB format of the image data. The BCDU-Net 

was loaded and trained to fit the image data to the masks. Throughout the training process, only 

the model with the lowest validation loss was saved.  

In the evaluation phase, the model predicted masks based on the image data input. These 

predicted masks, initially in RGB format, were subsequently reformatted into binary masks. 

The conversion to binary masks facilitates the computation of informative metrics for assessing 

performance, such as the Jaccard score, F1 score, and the generation of a confusion matrix. In 

addition, sample images with ground truth masks along with their predictions can be displayed 

to visually evaluate the model’s performance.  

In this work, the objective was not to predict ground truth data. Instead, the developed model 

served the purpose of predicting a specific segment within a skin lesion to quantify the 

plausibility of saliency. The workflow can be divided into a preparation and evaluation phase.  

During the preparation phase, the ISIC image data had to match the structure of the training 

data for BCDU-Net. To achieve this, the ISIC images from a specific domain were resized to 

                                                 
4 https://github.com/rezazad68/BCDU-Net/tree/master 
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224x224 pixels and were organized into a NumPy data frame. Subsequently, Grad-CAM was 

applied to all images in the dataset, generating class activation maps, which were resized to 

224x224 pixels and segregated into two NumPy data frames, depending on correct or wrong 

prediction.  

To determine the actual performance of BCDU-Net, the computation method of the Jaccard 

score has been altered. Since the measured value was derived from the entirety of the images, 

larger skin lesions had a greater influence on the result. Computing the IoU for each image and 

averaging over all IoU values yielded a more representative result. Therefore, the method was 

modified for better validity.  

The evaluation algorithm has been altered to measure the alignment between the saliency 

predictions and the skin lesion segment. At this stage, images from one domain were fed 

through the model. The binary segmentation predictions generated by BCDU-Net were 

compared to the previously saved class activation maps instead of ground truth segmentation 

masks. This entails one fundamental difference to the predefined evaluation procedure. The 

class activation maps are greyscale images that contain floating-point values between 0 and 1. 

A higher value represents greater activation in the corresponding image region. For reasons 

detailed in the 3.6.2 Similarity Metric: Jaccard Index (IoU), wIoU subsection, binarization of 

the class activation maps is not a viable option. Since F1-Score and confusion matrix are bound 

to a binary classification problem, they cannot add benefit to the quantification of class 

activation maps plausibility. To address this challenge, the Jaccard score has been adapted to 

take float values into account. This resulted in a modification referred to as “wIoU”. The 

specifics of this modification are elaborated in the subsequent section. 

4.7 Implementation of wIoU 

The intensity of the CAM activations is taken into consideration by the wIoU, high activation 

within the skin lesion segment strongly contributes to the wIoU value of a sample. The wIoU 

served the purpose of averting the threshold optimization problem, as discussed in section 3.6.2. 

This optimization would have to be applied to every domain, limiting the comparability of the 

measured values in case of different thresholds. In the context of a single image with its 

corresponding segmentation masks and class activation map, the intersection and union values 

were computed. Intersection was derived from the element-wise multiplication of all mask 

values (binary) with the corresponding class activation map values (float). Union was calculated 

by summing mask and activation map values while subtracting the intersection value. 

Intersection was subsequently divided by union, yielding a result that is in conformity with the 
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mathematical description in 3.6.2. Specifically, a wIoU of 1 is reached in case of exclusive 

maximum activation overlapping perfectly with the skin lesion segment However, due to the 

characteristics of the ResNet CAMs, it was unlikely to obtain a wIoU score of 1. This should 

be considered when interpreting the wIoU results. As previously mentioned, the wIoU has been 

calculated individually for each image and was then aggregated into a list. Subsequently, the 

mean of all wIoU values was determined from this list. This process yielded separate mean 

wIoU values for correct and incorrect classifications. 

5. Results 

5.1 Classification and Activations on Dermoscopic Datasets 

Primary classification has been performed using the ResNet18, which was trained for 10 epochs 

on an inter-domain ISIC dataset, comprised of 14791 training images. The only image 

transformation applied before training is resizing the images to 224x224 pixels. The statistical 

results obtained from this evaluation are presented in Table 2. 

 

Table 2: Test results on an inter-domain test dataset, containing 2385 images. Columns from left to right: accuracy, 

melanoma true positive, melanoma false negative, melanoma true negative, melanoma false positive, percentage 

of melanoma in training data, F1-Score for melanoma class. 

Dataset Acc. Mel. tp Mel. fn Mel. tn Mel. fp Mel. % F1 

Inter-domain ISIC 0.885 0.7 0.3 0.954 0.046 0.551 0.768 

 

The classifiers accuracy and F1 score in Table 2 show how a ResNet18 classifier performs with 

access to multiple domains. Despite a slight overrepresentation of melanoma samples in the 

training dataset, the resulting classifier was clearly worse at correctly identifying melanoma 

than it was at identifying nevus. 

For the classifiers Grad-CAM heatmaps, a brief excerpt is presented in Figure 16 to outline the 

discovered patterns. In the case of correct melanoma classification, it is observed that the 

activation maps often do not precisely align with the skin lesion area. Neural network activation 

overlaps with the skin lesion area more accurately in case of correctly classified nevus samples. 

Neural network activation of wrongly classified actual nevus images is clearly less plausible 

than in cases of correct nevus classification. For incorrectly classified actual melanoma samples 

however, the activation plausibility is similar to correctly classified melanoma samples, since 

the activation area continues to not match the area of the skin lesion.  
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Figure 16: Representative samples of the inter-domain test dataset with their class activation map (middle image) 

and their heatmap overlay (right image). Top row: correctly classified melanoma, second row: correctly classified 

nevus, third row: falsely classified actual melanoma, fourth row: falsely classified actual nevus. (created with 

Matplotlib and GIMP 2.10) 

5.2 Classification and Activations on Domain Shifted Datasets 

To gain insights into the causes and manifestations of domain shift on image level, ResNet18 

models underwent training on every available domain. Subsequently, these models were tested 

on both the source domain and HAM loc body as the target domain. Each model was 

exclusively trained for 10 epochs on its respective source domain training dataset.  

Table 3: Test Result on HAM loc body as the source domain. Columns from left to right: melanoma share of 

training dataset in percent, accuracy, sensitivity for melanoma class, specificity for melanoma class, F1-Score for 

melanoma class. 

Dataset Domain Mel. % Accuracy  Sensitivity Specificity F1 

HAM loc body 9.9 0.916 0.796 0.929 0.652 

 

Table 4: Test Results on the source domains. Columns from left to right: melanoma share of training dataset in 

percent, accuracy, sensitivity for melanoma class, specificity for melanoma class, F1-Score for melanoma class 

Dataset Domain Mel. % Accuracy  Sensitivity Specificity F1 

HAM age under 30 4.5 0.982 0.8 0.991 0.8 

HAM loc head neck 45.0 1 1 1 0.976 

HAM loc palms soles 6.9 1 1 1 1 

BCN loc body 41.3 0.971 0.964 0.982 0.97 

BCN age under 30 8.1 0.983 0.786 1 0.889 

BCN loc head neck 65.7 0.984 0.984 0.984 0.988 

BCN loc palms soles 64.6 0.967 0.974 0.952 0.974 

MSK loc body 44.1 0.965 0.938 0.977 0.942 

MSK age under 30 8.0 1 1 1 1 

MSK loc head neck 59.9 0.898 0.971 0.792 0.919 
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Table 5: Test Results on HAM loc body as the target domain. Every row represents a separate model, trained on 

the specified source domain. Columns from left to right: melanoma share of training dataset in percent, accuracy, 

sensitivity for melanoma class, specificity for melanoma class, F1-Score for melanoma class 

Dataset Domain Mel. % Accuracy  Sensitivity Specificity F1 

HAM age under 30 4.5 0.904 0.118 0.991 0.196 

HAM  loc head neck 45.0 0.917 0.774 0.933 0.649 

HAM loc palms soles 6.9 0.915 0.194 0.994 0.311 

BCN loc body 41.3 0.428 0.624 0.406 0.177 

BCN age under 30 8.1 0.905 0.065 0.998 0.119 

BCN  loc head neck 65.7 0.909 0.667 0.935 0.59 

BCN loc palms soles 64.6 0.283 0.882 0.217 0.196 

MSK loc body 44.1 0.814 0.71 0.825 0.43 

MSK age under 30 8.0 0.893 0.022 0.988 0.038 

MSK  loc head neck 59.9 0.627 0.839 0.603 0.308 

 

The results in Table 3 reveal that the F1-Score of the ResNet18 model, that was trained on the 

HAM loc body dataset, is the lowest among all models tested on their respective source 

domains. It is even lower than the F1-Score of the Big ISIC model.  

As shown in Table 4, all other domain specific models outperformed the inter-domain model 

when tested on their respective source domain test sets. Table 5 provides further insights 

regarding the evaluation of the retrieved models on the HAM loc body test set. Notably, five 

domains exhibited F1-Scores surpassing 0.3, with two of them achieving scores exceeding 0.5. 

Sensitivity has a significant influence on the F1-Score. Consequently, models that achieved 

greater sensitivity for melanoma on the HAM loc body test dataset also demonstrated superior 

F1-Scores. 

The initial focus for the examination of the activation patterns will be on the on the HAM loc 

body test set, which also serves as the target domain for other models. By starting with the 

analysis of this domain, a foundation for understanding the challenges associated with image 

classification in this specific domain is established. 

 

Figure 17: Representative samples of the HAM loc body test set with their class activation map (middle image) 

and their heatmap overlay (right image). a) correctly classified melanoma, b) correctly classified nevus, c) actual 

melanoma classified as nevus d) actual nevus classified as melanoma (created with Matplotlib and GIMP 2.10) 
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The class activation maps of correctly classified melanoma samples exhibit spot-wise activation 

and do not cover a substantial area of the skin lesion (see Figure 17). In contrast, CAMs for the 

nevus class often highlight meaningful regions within the image. Notably, there is a ubiquitous 

activation area present at the bottom of all accurately classified nevus images, frequently taking 

on a bar-shaped pattern. 

In cases where actual nevus images were misclassified, the corresponding activation maps once 

again display spot-like activations, missing rational patterns. For wrongly classified actual 

melanoma images, CAMs exhibit similar patterns to activation maps of correctly classified 

nevus samples.  

Shifting the focus away from the details of activation patterns, it appears that more pictures of 

the correctly classified images have a red hue, which is primarily associated with nevus 

samples. A detailed random examination of 50 nevus samples inside the HAM loc body training 

set revealed that 35 out of 50 exhibited an intense red tone. In contrast, a random sampling of 

50 melanoma images inside the same dataset revealed only 5 images with a discernible red hue. 

Illustrative examples of the samples are provided in Figure 18. 

Along with the red hue, another peculiarity becomes apparent within the HAM loc body training 

dataset. Melanoma skin lesions tendentially occupy a larger portion of the image. Specifically, 

the aforementioned bottom region of the image is homogenous and clear of skin lesions or other 

objects in 13 out of the 50 randomly selected melanoma samples. With 28 out of 50 samples 

the nevus images have more than double the relative frequency of clear and homogenous bottom 

portions.  

Illustrative samples were selected from the source and target domain to showcase the CAM 

patterns established by the domain-specific models. The insights were drawn from a 

comprehensive analysis of up to 80 images per domain, allowing the identification of consistent 

activation patterns.  

The CAMs of the models, with outstanding performance will be closer examined in the 

following paragraphs. CAMs of the model trained on BCN loc body will be elaborated as well. 

 

Figure 18: Random samples of a) nevus images and b) melanoma images of the HAM loc body training dataset. 

(created with Matplotlib and GIMP 2.10) 
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Figure 19: Representative samples of the HAM loc head neck test set with their class activation maps (middle 

image) and their heatmap overlay (right image). a) correctly classified melanoma, b) correctly classified nevus, c) 

falsely classified actual nevus is the only incorrectly classified sample. The lower half contains samples of HAM 

loc body test set, which is the target domain. d) correctly classified melanoma, e) correctly classified nevus, f) 

falsely classified actual melanoma g) falsely classified actual nevus (created with Matplotlib and GIMP 2.10) 

The activations of the model trained on the HAM loc head neck domains training set are of 

great interest, since it exhibited the greatest F1-Score of all domain specific models tested on 

the HAM loc body test set. The examination of the source domain CAMs yielded that activation 

in melanoma samples is spot-wise but reasonably located on the skin lesion area (see Figure 

19). CAMs of correctly classified nevus samples show a frame-like activation pattern in the 

periphery of the samples. Notably, the bottom-bar shape is also often present in the CAMs. The 

CAM of the only incorrectly classified source domain sample shows spot-wise activation on 

the skin lesion. 

The CAMs on the target domain reveal activation with a focus on the skin lesion whilst not 

covering the complete skin lesion area in case of correct melanoma classification. For correctly 

classified nevus samples, the CAMs consistently exhibit a frame-like activation pattern, 

accentuated by a prominent bottom-bar. The remaining activation is often times meaningfully 

located on the skin lesion area. Wrongly classified actual nevus samples typically display spot-

wise activation on the nevus images, which are sometimes not meaningful. CAMs of wrongly 

classified actual melanoma samples exhibit the mentioned frame pattern, although with less 

intensity compared to cases of correct classification. 
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Figure 20:Representative samples of the BCN loc head neck test set with their class activation maps (middle image) 

and their heatmap overlay (right image). a) correctly classified melanoma, b) correctly classified nevus, c) the only 

available misclassification is an actual melanoma falsely classified as a nevus. The lower half contains samples of 

HAM loc body test set, which is the target domain. d) correctly classified melanoma, e) correctly classified nevus, 

f) falsely classified actual melanoma g) falsely classified actual nevus (created with Matplotlib and GIMP 2.10) 

The second best F1-Score is achieved by the model trained on the BCN loc head neck training 

set. In this context, source domain CAMs for correctly classified melanoma samples display 

spot-wise activations in meaningful regions (see Figure 20). On the other hand, CAMs for 

correctly classified nevus samples lack clear purpose and often concentrate activation in the 

brighter peripheral areas of the images, resulting in a prominent frame-like shape present in 

most samples. The only misclassified source domain image contains a high amount of body 

hair. However, the activation appears more reasonable compared to many other samples for 

which the network decided nevus.  

Examining the same model’s CAMs on the target domain reveals that activations of correctly 

classified melanoma samples are more meaningful than in the source domain with larger 

activation spots on the skin lesion area. CAMs of correctly classified nevus samples always 

contain a frame pattern in which the left and bottom portions are especially prominent. In cases 

of wrong classification on the target domain, the class specific activation patterns persist, only 

differing in classification outcome.  



34 

 

 

Figure 21: Representative samples of the MSK loc body test set with their class activation maps (middle image) 

and their heatmap overlay (right image). a) correctly classified melanoma, b) correctly classified nevus, c) falsely 

classified actual melanoma, d) falsely classified actual nevus. The lower half contains samples of HAM loc body 

test set, which is the target domain. e) correctly classified melanoma, f) correctly classified nevus, g) falsely 

classified actual melanoma h) falsely classified actual nevus (created with Matplotlib and GIMP 2.10) 

The CAM examination of the MSK loc body model reveals that a high F1-Score and similar 

patterns are not restricted to the loc head neck domains (see Figure 21). 

Correctly classified source domain melanoma samples contain meaningful activation but does 

not consistently cover the complete area of the skin lesion. CAMs of correctly classified nevus 

samples lack plausibility, since the CAM is often highlighting objects like rulers, bubbles or 

even bright areas in the peripheral regions. Plausibility of CAMs further diminishes in both 

cases of misclassification. 

When the model, trained on the MSK loc body training set, is tested on the HAM loc body test 

set, the CAM patterns of the correctly classified melanoma don’t change. In contrast, CAMs of 

correctly classified nevus samples always contain a frame-like activation pattern that gains 

intensity when the activation area does not overlap with the skin lesion. Notably, the model did 

not exhibit this pattern on source domain samples. In case of wrongly classified actual nevus 

samples, the activation area usually has an overlap with skin lesions but does not cover large 

areas. CAMs of wrongly classified actual melanoma samples show plausible activation, despite 

the model's evident misclassification. 
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Given that HAM loc palms soles and MSK loc head neck also achieved an elevated F1-Score, 

it is reasonable to note discovered patterns in the CAMs of the test and on the target domain. 

Both models exhibit a frame-shaped activation pattern in case of nevus classification. This is 

especially true for the activations derived from testing on the target domain.  

 

Figure 22: Representative samples of the BCN loc body test set with their class activation maps (middle image) 

and their heatmap overlay (right image). a) correctly classified melanoma, b) correctly classified nevus, c) falsely 

classified actual melanoma, d) falsely classified actual nevus. The lower half contains samples of HAM loc body 

test set, which is the target domain. e) correctly classified melanoma, f) correctly classified nevus, g) falsely 

classified actual melanoma h) falsely classified actual nevus (created with Matplotlib and GIMP 2.10) 

Lastly, the CAMs of the BCN loc body model are investigated to find indications for the subpar 

performance on the target domain. The BCN loc body model indeed yields meaningful CAMs 

on its own test set, particularly for correctly classified melanoma samples (see Figure 22). In 

such instances, activations often cover larger areas of the skin lesion. Conversely, CAMs for 

correctly classified nevus samples exhibit more extensive but less intensive coverage compared 

to the melanoma CAMs. The wrong classifications tendentially show less overlap between the 

skin lesion and the activation area.  

When the BCN loc body model is applied to the HAM loc body test set, the activation in 

correctly classified nevus samples is more easily diverted by other objects like body hair. In 

contrast, CAMs of correctly classified melanoma remain reasonable and activation covers 

substantial areas of the skin lesion. Notably, these patterns extend to the misclassifications, 
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manifesting in plausible activation in case of faulty decision for melanoma and distraction in 

case of faulty decision for nevus.  

Shifting the scope away from the activations, a distinctive color mismatch between correctly 

and incorrectly classified samples inside the HAM loc body test set is observed. The 

aforementioned red hue inside the HAM loc body dataset is found to be overrepresented in the 

false classifications of the BCN loc body model.  

5.3 Classification and Activations on Augmented Domain Shifted Datasets 

5.3.1 Augmenting the Target Domain Dataset 

Augmenting the HAM loc body test dataset aims at verifying the patterns that the detailed 

examination of the results in the previous section has yielded. With augmenting the nevus 

images inside the target domain without resizing the following results were derived.  

Table 6: Test Results of the model trained on their source domain and tested on the augmented HAM loc body 

dataset without resizing. Bold F1-Score values indicate improvement compared to the non-augmented HAM loc 

body test set. Columns from left to right: accuracy, sensitivity for melanoma class, specificity for melanoma class, 

F1-Score for melanoma class. 

Dataset Domain Accuracy Sensitivity Specificity F1 

HAM age under 30 0.913 0.118 1 0.212 

HAM loc head neck 0.972 0.774 0.994 0.847 

HAM loc palms soles 0.919 0.194 0.999 0.321 

BCN loc body 0.362 0.624 0.333 0.162 

BCN age under 30 0.906 0.065 0.999 0.12 

BCN loc head neck 0.901 0.667 0.927 0.571 

BCN loc palms soles 0.422 0.882 0.372 0.232 

MSK loc body 0.71 0.71 0.71 0.326 

MSK age under 30 0.889 0.022 0.985 0.037 

MSK loc head neck 0.652 0.839 0.632 0.323 

 

From Table 6 it becomes evident that augmenting the HAM loc body test set cannot 

significantly improve overall classification performance compared to the non-augmented test 

set. Some already high performing models managed to enhance their performance on the 

augmented test set. A further examination of the Grad-CAM results is presented in Figure 23 

with exemplary samples. Figure 23 elucidates the presence of the aforementioned frame pattern 

by showcasing an overview of correctly classified samples. Figure 23 further establishes an 

association between performance on the non-augmented HAM loc body test set to the intensity 

of the frame pattern in the CAMs of the augmented HAM loc body test set.  
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Figure 23: Representative samples from the augmented (no resizing) HAM loc body dataset with their class 

activation maps (middle image) and their heatmap overlay (right image). Employed domain-specific models in 

descending order of performance on the non-augmented HAM loc body test set. Left side melanoma, right side 

nevus. All presented images are correctly classified. (created with Matplotlib and GIMP 2.10) 

Introducing resizing to 224x224 pixels to the augmentations the images exhibited the results in 

Table 7 and activations in Figure 24.  

 

Table 7: Test Results of models, trained on their source domain and tested on the augmented (with resizing) HAM 

loc body dataset. Bold source datasets indicate high performance of according model on non-augmented HAM loc 

body test set. Bold F1-Score values indicate improvement compared to the non-augmented HAM loc body test set. 

Columns from left to right: accuracy, sensitivity for melanoma class, specificity for melanoma class, F1-Score for 

melanoma class, absolute change of F1-Score compared to the test on the non-augmented HAM loc body test set. 

Dataset Domain Accuracy Sensitivity Specificity F1 F1 Change 

HAM age under 30 0.884 0.065 0.974 0.099 -0.097 

HAM loc head neck 0.701 0.935 0.675 0.382 -0.266 

HAM loc palms soles 0.916 0.591 0.952 0.582 0.271 

BCN loc body 0.395 0.71 0.36 0.188 0.011 

BCN age under 30 0.895 0.333 0.956 0.385 0.266 

BCN loc head neck 0.751 0.871 0.738 0.409 -0.181 

BCN loc palms soles 0.179 0.989 0.09 0.192 -0.003 

MSK loc body 0.44 0.753 0.406 0.21 -0.220 

MSK age under 30 0.879 0.022 0.973 0.034 -0.004 

MSK loc head neck 0.383 0.806 0.336 0.205 -0.102 
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Figure 24: Representative samples from the augmented HAM loc body dataset with resizing, along with their 

class activation maps (middle image) and their heatmap overlay (right image). Every line shows CAMs for one 

model, trained on the specified domain. Left side melanoma, right side nevus. All presented images are correctly 

classified. (created with Matplotlib and GIMP 2.10) 

The prominent frame shape pattern is not present in the resized images in Figure 24 anymore. 

The exact same nevus samples as in Figure 23 could not be provided since the samples were 

incorrectly classified by some models, and exhibit CAMs for the other class. The CAMs appear 

noticeably different to the ones derived from testing on the augmented HAM loc body test set 

without resizing. Activations are generally more plausible, while the overall statistical 

performance declines. It becomes evident that four out of 5 models which produce the frame 

shape activation pattern for nevus classification suffered a substantial reduction in their F1-

Score when confronted with resized images. Conversely, other domain-specific models did not 

exhibit a similar decline in performance under these conditions. Notably, the model, trained on 

the HAM loc palms soles training set, demonstrated a significant F1-Score increase of 0.271.  
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5.3.2 Comparison of Saliency Methods 

After initial Grad-CAM results of HAM loc body as the source domain with all other domains 

as the target domain the images in Figure 25 were obtained. 

 

Figure 25: Representative problematic samples from the augmented HAM loc body dataset with resizing, along 

with their class activation maps (middle image) and their heatmap overlay (right image). The employed model was 

trained on the augmented HAM loc body training set. a) correctly classified melanoma, b) correctly classified 

nevus, c) falsely classified actual melanoma, d) falsely classified actual nevus (created with Matplotlib and GIMP 

2.10) 

Several actual nevus samples classified as melanoma show no activation while correctly 

classified nevus samples have CAMs that convey plausible activation.  

This outcome prompts a further examination of the available saliency methods inside the 

GitHub5 repository [35]. Therefore, benchmarks were performed on the non-augmented HAM 

loc body test set by employing the model trained on the non-augmented HAM loc body training 

set to find possible deficiencies in the applied saliency method.  

Figure 26 illustrates that Grad-CAM’s activation is similar to HiResCAM, while Grad-CAM-

Elementwise is equal to Layer-CAM. Full-Grad shows identical activation for both classes. 

This indicates a lack of class discrimination in the implementation of Full-Grad. Overall-Grad-

CAM-Elementwise and Layer-CAM produce the most rational activation, since the activation 

covers the skin lesion. Notably, with every saliency method the prominent nevus bottom bar 

shape activation pattern is visible.  

 

                                                 
5 https://github.com/jacobgil/pytorch-grad-cam 
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Figure 26: Saliency benchmarks of different methods with a) CAMs for the nevus class and b) CAMs for the 

melanoma class. The employed model is trained on the non-augmented HAM loc body dataset. 

Among the tested methods only Grad-CAM-Elementwise showed both different activation for 

both classes and focused on the relevant skin lesion area. Therefore, the benchmark is repeated 

on a sample where Grad-CAM shows almost no melanoma class activation.  

 

Figure 27: Saliency benchmarks of Grad-CAM and Grad-CAM-Elementwise. a) CAMs for the nevus class and 

b) CAMs for the melanoma class. (created with Matplotlib and GIMP 2.10) 

In the benchmark in Figure 27, nevus and melanoma Grad-CAM activation seem to annul each 

other in areas with activation for both classes. It is important to emphasize the relative intensity 

of Grad-CAM at this juncture. Each CAM for a sample is scaled according to the maximum 

intensity of the activation within that specific sample. Consequently, the color of the heatmap 

is not an indicator for the absolute activation value in this area. Therefore, areas with low 

discernible nevus activation could represent a higher absolute value than areas with high 

melanoma activation. With Grad-CAM-Elementwise this annulling effect cannot be observed.  
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5.3.3 Augmenting the Source Domain Dataset 

Augmenting HAM loc body as the source domain dataset introduces a different testing 

approach compared to the previous subsections. The effects of augmenting the source domain 

dataset can only be evaluated by testing the derived model on all other equally augmented 

domains beforehand. Since this testing approach was not executed so far, this test was 

conducted first with the model trained on HAM loc body dataset. This model will be referred 

to as the “original” model. By testing the original model on all domains, a baseline is established 

for the evaluation of subsequent test results.  

Table 8: Test Results of the originally presented model trained on the HAM loc body domain and tested on all 

other domains. Columns from left to right: employed model, target domain, accuracy, sensitivity for melanoma 

class, specificity for melanoma class, F1-Score for melanoma class. 

Source Domain Target Domain Accuracy  Sensitivity Specificity F1 

HAM loc body HAM age under 30 0.866 0.6 0.878 0.286 

HAM loc body HAM loc head neck 0.773 0.65 0.875 0.722 

HAM loc body HAM loc palms soles 0.955 0.33 1 0.5 

HAM loc body BCN loc body 0.71 0.362 0.956 0.508 

HAM loc body BCN age under 30 0.91 0.429 0.951 0.429 

HAM loc body BCN loc head neck 0.551 0.35 0.938 0.506 

HAM loc body BCN loc palms soles 0.517 0.256 1 0.408 

HAM loc body MSK loc body 0.701 0.124 0.965 0.206 

HAM loc body MSK age under 30 0.892 0.143 0.953 0.167 

HAM loc body MSK loc head neck 0.475 0.114 1 0.205 

 

Despite the difference in the testing approaches, one peculiar outcome in Table 8 should be 

compared to the test results of the domain-specific models on HAM loc body in Table 5. 

Interestingly, the elevated performance of the models that showed the frame pattern does not 

manifest when the original model is tested on these domains. In addition, F1-Scores with HAM 

loc body serving as the source domain are tendentially higher compared to HAM loc body 

serving as the target domain.  

HAM loc head neck stands out with a high performance compared to the other target domains. 

A prevalently low sensitivity in 8 out of 9 remaining domains is the main reason for the poor 

F1-Scores of the model. As the performance of the original model is now established, the 

performance of the model trained on the augmented HAM loc body can be investigated.  
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Table 9: Test results of the model trained on the augmented HAM loc body domain training set and tested on all 

other domains. Columns from left to right: source domain, target domain, accuracy, sensitivity for melanoma class, 

specificity for melanoma class, F1-Score for melanoma class, absolute change in F1-Score compared to the original 

HAM loc body model. 

Source Domain Target Domain Accuracy Sensitivity Specificity F1 F1 Change 

aug. HAM loc body HAM age under 30 0.929 0.6 0.944 0.429 0.143 

aug. HAM loc body HAM loc head neck 0.773 0.6 0.917 0.706 -0.016 

aug. HAM loc body HAM loc palms soles 0.977 1 0.976 0.857 0.357 

aug. HAM loc body BCN loc body 0.749 0.487 0.934 0.616 0.108 

aug. HAM loc body BCN age under 30 0.869 0.5 0.901 0.378 -0.051 

aug. HAM loc body BCN loc head neck 0.631 0.463 0.953 0.623 0.117 

aug. HAM loc body BCN loc palms soles 0.717 0.564 1 0.721 0.313 

aug. HAM loc body MSK loc body 0.776 0.319 0.977 0.465 0.259 

aug. HAM loc body MSK age under 30 0.935 0.143 1 0.25 0.083 

aug. HAM loc body MSK loc head neck 0.475 0.114 1 0.205 0.000 

 

 

Figure 28: Absolute F1-Score change of the augmented HAM loc body model compared to the original HAM loc 

body model for every target domain. (created with MS Office) 

By augmenting the training set of HAM loc body the derived model was able to improve its 

performance in 7 out of 10 augmented target domains (see Table 9). The overall F1-Score 

change is 1.313, signifying a substantial improvement in classification performance. 

Augmenting the training dataset concurrently improves the overall sensitivity, indicating a 

more accurate identification of melanoma. Regarding F1-Score, the augmented model now 

outperforms the original HAM loc body model on the HAM loc body test set in 3 out of 10 

target domains. Loc palms soles target domains benefit especially from the augmentation of the 

training set.  
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Figure 29: Comparison of representative samples from augmented test sets to their original counterparts of 

displayed domains, along with their class activation maps (middle image) and their heatmap overlay (right image). 

Classification outcome for every sample can be derived from the legend. Wrong actual melanoma samples show 

CAM for nevus class and wrong actual nevus samples show CAM for melanoma class. (created with Matplotlib 

and GIMP 2.10) 

The augmented target domains with the best and worst performance of the original model will 

be the focus of the examination, as well as the domain with the best improvement. When 

comparing the CAMs of HAM loc head neck and MSK age under 30 in Figure 29, it becomes 

evident that the original model applies similar activation patterns to the samples. The model 

classifies nevus based on a bottom bar activation pattern, while melanoma classification relies 

on the border regions of the skin lesion. Notably, the skin lesions in the MSK age under 30 

dataset tend to be smaller, and unlike the HAM loc head neck model, no red hue is recognizable. 

Performance on the HAM loc palms soles domain improved significantly due to the correct 

classification of all melanoma samples. Notably, the augmented HAM loc body model does not 

show bottom bar activation and the focus of activation is directed at the skin lesions. The 

activation area tends to exceed the skin lesion area. 

5.4 Domain Adaptation on Domain Shifted Datasets 

The performance of the domain adapted models on all the target domains is presented in Table 

10. It is worth noting that these results were obtained solely by the application of DANN 

without any augmentation. These results will subsequently be compared to the original and the 

augmented models’ performances.  
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Table 10: Test results of the DANN models which are tested on the target domain. Columns from left to right: 

source domain, target domain, accuracy, sensitivity for melanoma class, specificity for melanoma class, F1-Score 

for melanoma class, absolute change in F1-Score compared to the original HAM loc body model. 

Source 
Domain 

Target Domain Mel. % Acc. Sensitivity Specificity F1 F1 
Change 

HAM loc body HAM age under 30 4.5 0.738 0.6 0.738 0.167 -0.119 

HAM loc body HAM loc head neck 45 0.886 0.8 0.958 0.865 0.143 

HAM loc body HAM loc palms soles 6.9 0.818 1 0.805 0.429 -0.071 

HAM loc body BCN loc body 41.3 0.686 0.534 0.794 0.585 0.077 

HAM loc body BCN age under 30 8.1 0.693 0.857 0.679 0.308 -0.121 

HAM loc body BCN loc head neck 65.7 0.781 0.732 0.875 0.814 0.308 

HAM loc body BCN loc palms soles 64.6 0.833 0.744 1 0.853 0.445 

HAM loc body MSK loc body 44.1 0.692 0.814 0.638 0.617 0.411 

HAM loc body MSK age under 30 8 0.763 0.571 0.779 0.267 0.100 

HAM loc body MSK loc head neck 59.9 0.61 0.686 0.5 0.676 0.471 

 

 

Figure 30: Absolute F1-Score changes of the augmented HAM loc body model and the domain adaptation 

models in comparison to the original HAM loc body model for every target domain(created with MS Office) 

Table 10 and Figure 30 collectively reveal a significant enhancement in F1-Score performance 

by DANN, demonstrating an overall improvement of 1.643. DANN models now outperform 

the original HAM loc body model on the HAM loc body test set in 4 out of 10 target domains. 

However, three domain adapted models exhibit a lower performance compared to the original 

HAM loc body model. This decrease in performance is particularly noticeable in scenarios 

where the training dataset contains a low melanoma count. Specifically, a reduction in 

specificity causes the F1-Score to fall behind the original model’s performance.  
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All domain shifted models demonstrate higher sensitivity on the target domain, whereas this 

cannot be conveyed to specificity. In fact, specificity decreased in 8 of 10 target domains.  

Compared to augmentation, domain adaptation is capable of achieving a higher increase in 

performance. However, it is important to note that a decrease in Specificity can result in a 

performance drop below source model effectiveness. This negative impact on specificity, 

induced by domain adaptation, is notably absent in the results of the augmented models.  

Concerning the samples used in Figure 31 one key consideration needs to be addressed. The 

train/test split function for the target domain was executed without specifying a random state. 

Consequently, the train and test sets for the target domains were sampled differently in 

comparison to the original and augmented HAM loc body models. Hence, some previously 

presented samples now belong to the training set of the target domain. For the purpose of visual 

comparison, some target domain training samples are presented here, although they did not 

contribute to the scores on the test datasets in Table 10. For the subsequent quantification 

however, the same images cannot be provided since the quantification of CAMs is an impartial 

process, unlike the subjective human interpretation, and would therefore distort the measured 

values in favor of the domain adapted models, because they have already encountered these 

samples. When comparing the CAMs of the domain adapted models with the original model in 

Figure 31, various differences can be identified. For melanoma class activations, the activation 

covers larger areas of the melanoma but exhibits lower intensity. Nevus activations still 

emphasize the skin lesion with a tendency to have spots of activation in peripheral areas. 

 

Figure 31: Comparison of representative samples from test sets or training sets of displayed domains, along with 

their class activation maps (middle image) and their heatmap overlay (right image). Classification outcome for 

every sample can be derived from the legend. Wrong actual melanoma samples show CAM for nevus class and 

wrong actual nevus samples show CAM for melanoma class. (created with Matplotlib and GIMP 2.10) 
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In addition, a frame pattern is noticeable in CAMs for both classes across all domains. This 

frame pattern has been previously observed when testing the domain models on HAM loc body 

as the target domain. In comparison to the augmented HAM loc body, the CAMs are less 

coherent. Nevertheless, the activation remains plausible, since the activation’s intensity is high 

in areas covering the skin lesion. Applying DANN to the BCN loc palms soles domain resulted 

in a 0.455 increase in F1-Score performance. However, the activation patterns of the model do 

not show a noticeable difference to the other DANN models.  

5.5 Quantitative Comparison of Grad-CAM-Elementwise Class Activation 

Maps 

Prior to applying BCDU-Net to the domain-specific images, it is essential to validate its actual 

effectiveness on the domain data, since BCDU-Net training was only performed for 10 epochs 

instead of the 100 epochs proposed in the BCDU-Net publication [27].  

Table 11: Performance comparison of proposed BCDU-Net [27] and own BCDU-Net Model, which was trained 

for 10 epochs. 

Method F1-Score Sensitivity Specificity Accuracy JS 

BCDU-Net (d=3) 0.851 0.785 0.982 0.937 0.937 

BCDU-Net (d=3) 10 ep. 0.858 0.825 0.963 0.925 0.751 

 

Evaluating BCDU-Net's performance in Table 11, it becomes apparent that 82.5% of the skin 

lesion is covered with the predicted segment (sensitivity) and 89.3% of the predicted segment 

is truly relevant (precision). BCDU-Net achieved an overall Jaccard Score of 0.75 on the 

ISIC2018 test set, which falls short of the performance specified in the BCDU-Net publication 

[27]. However, the accuracy aligns with that of the BCDU-Net trained for 100 epochs. 

Computing the IoU for each image and averaging all IoU values yields 0.745 for the mean. This 

value closely corresponds to computing the overlap and union from the whole Numpy data 

frame, suggesting that BCDU-Net performs consistently on large and small skin lesions. An 

examination of the empirical probability density function of achieved IoU values on the test 

data frame, separated for images, reveals a distribution skewed to the left. Since 65% of the 

area under the curve represents 65 % of the BCDU-Net test samples, the threshold for a level 

of probability of 65% can be derived. The resulting IoU tolerance value is similar to the mean 

value, and therefore the tolerance can be estimated with 0.26.  
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Figure 32:Empirical probability density function of BCDU-Net for IoU values obtained from the BCDU-Net test 

set. (created with Matlpotlib) 

 

Table 12: F1-Score and mean wIoU in three testing scenarios: Original model, augemented model, DANN models 

 Original  Augmentation DANN 

Target domain F1 wIoU F1 wIoU F1 wIoU 

HAM age under 30 0.286 0.226 0.429 0.358 0.167 0.191 

HAM loc head neck 0.722 0.195 0.706 0.299 0.865 0.199 

HAM loc palms soles 0.5 0.196 0.857 0.27 0.429 0.189 

BCN loc body 0.508 0.23 0.616 0.333 0.585 0.238 

BCN age under 30 0.429 0.24 0.378 0.329 0.308 0.227 

BCN loc head neck 0.506 0.227 0.623 0.304 0.814 0.182 

BCN loc palms soles 0.408 0.214 0.721 0.281 0.853 0.214 

MSK loc body 0.206 0.186 0.465 0.293 0.617 0.204 

MSK age under 30 0.167 0.198 0.25 0.335 0.267 0.193 

MSK loc head neck 0.205 0.187 0.205 0.267 0.676 0.186 

 

As Table 12 illustrates, the mean values of wIoU are observed to be the lowest in the DANN 

testing scenario and second lowest in the original testing scenario. Augmentation led to the 

most overlap of skin lesions and CAMs with an average wIoU of 0.306 across all domains. In 

a general sense, an improvement in F1-Score does not necessarily imply an improvement in 

wIoU. Further, good F1-performance is independent of a high wIoU score as HAM age under 

30 and HAM loc head neck emphasize across all testing scenarios.  
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Table 13: Overview of relative wIoU difference between correctly and wrongly classified samples in augmentation 

and domain adaptation scenario. 

 Augmentation DANN 

Target domain 
c/w wIoU relative 
difference in % 

c/w wIoU relative 
difference in % 

HAM age under 30 2.39 -13.86 

HAM loc head neck 2.24 -18.85 

HAM loc palms soles -8.99 -4.76 

BCN loc body -1.90 7.23 

BCN age under 30 36.57 5.07 

BCN loc head neck -28.15 13.13 

BCN loc palms soles -18.39 1.46 

MSK loc body -3.11 1.10 

MSK age under 30 3.93 14.10 

MSK loc head neck -28.12 48.86 

 

 

 

Figure 33: Relative changes of F1-Score and wIoU of the augmented model on all target domains with respect to 

the original model. (created with MS Office) 
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Figure 34: Relative changes of F1-Score and wIoU of the DANN models on all target domains with respect to 

the original model. (created with MS Office) 

Conclusively, no direct association can be identified between the absolute measured values for 

wIoU and F-Score for both augmentation and domain adaptation. This observation extends to 

the relative changes in F1-Score and wIoU, as illustrated in Figure 33 and Figure 34. Notably, 

the relative change of average wIoU of the augmented model never falls below 31 % across all 

target domains. For the loc palms soles domains and MSK loc body the augmented model 

exhibits a relative change in wIoU that exceeds the relative change of the F-Score. The original 

model previously exhibited especially low sensitivity in all of these target domains. It is worth 

noting that augmentation led to an improvement in wIoU while the classification performance 

stagnated or even decreased. 

Upon assessing the relative wIoU difference between correctly and falsely classified melanoma 

samples of the augmented model in Table 13, it appears that the correctly classified samples do 

not exhibit more plausible saliency than the falsely classified samples. However, some domains 

show a significant difference between correct and wrong samples, surpassing the IoU tolerance 

threshold. Consequently, the reasons for these deviations are further investigated in Figure 36.  

Notably, the DANN models exhibited a positive relative difference between correct and wrong 

classifications across all domains that did not belong to the HAM domain. Most DANN models 

with a positive relative difference between correct and wrong classifications also exhibited 

elevated performance on the target domain (see Figure 35).  
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Figure 35: Relative wIoU difference between correct and wrong classifications and absolute F1-Change of 

DANN models on all target domains (created with MS Office) 

 

Examining samples from correctly and incorrectly classified BCN age under 30 images reveals 

that smaller lesions tend to be overrepresented, accompanied by a widespread activation area 

(see Figure 36). This leads to a lower wIoU score for the falsely classified samples. For the 

DANN testing of the MSK loc head neck, similar principles apply, since the lesions overlap 

more with the frame-like activation pattern of the model. This pattern is reversed in the case of 

BCN loc head neck and MSK loc head neck. 
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Figure 36: Correctly and falsely classified samples of various domains (left image) along with their class 

activation map (middle image) and thier skin lesion segment (right image) (created with Matplotlib and GIMP 

2.10)  



52 

 

6. Discussion 

6.1 Saliency on a Multi-Domain Dataset (Inter-Domain-ISIC Dataset) 

Before domain shifts can be explored with a ResNet18 model, it is essential to establish a 

benchmark and compare it with state-of-the-art approaches. This benchmark provides a 

baseline against which deviations from typical values and activation patterns can be identified. 

Rehman et al. [58] previously explored binary skin lesion classification and provided Grad-

CAM outputs with a comparable dataset. Despite the smaller and less balanced training dataset, 

Rehman et al. have achieved an F1-Score of 0.94 on ISIC images using a DenseNet201. 

Notably, Rehman et al. employed extensive image augmentation and more complex neural 

networks. Despite the renouncement of the extensive augmentation approach, it is apparent that 

this ResNet18 model does not reach state of the art performance. Nevertheless, this performance 

result serves as a valuable reference point to evaluate effects of domain shift on performance 

of ResNet18 models. 

Regarding the activation patterns, Rehman et al. also explored Grad-CAM activation of 

DenseNet201 on five samples. Rehman et al. did however not focus on differentiation between 

the class specific activations or correct classification outcome. They present Grad-CAM output 

that illustrates the model’s capability to focus on the skin lesion, without specifying the type of 

skin lesion or the specific activation patterns visible in the sample. Their result can be confirmed 

here since the focus of the activation of ResNet18 is also on the skin lesion except for cases of 

wrongly classified actual nevus samples. From the identified CAM patterns can be derived that 

in models, trained on an inter-domain dataset, Grad-CAM output can prove advantageous for 

determining the correctness of nevus classification.  

6.2 Interpretation of Statistical- and Activation-Differences between 

Domains 

Since domain shifts inside the ISIC dataset were quantified [10] it is of interest how CNN 

activations change and what insights can be derived from them as domain shift occurs. 

Specifically, the failure modes and beneficial particularities of domain-specific models are 

relevant. 

Before evaluating the performance of domain-specific models on the HAM loc body domain, 

it is essential to first assess the performance of a ResNet18 that was trained on this domain. 

Surprisingly, the F1-Score of the classifier is observed to be lower than that of the previously 

discussed inter-domain model. Since the data variability inside a domain is expected to be 
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smaller than that of an inter domain training set, this outcome may appear counterintuitive. The 

training process of the HAM loc body, also previously referred to as the original model, only 

differs from the inter-domain model in its preprocessing. Resizing however reduces the 

available amount of information. Renouncing resizing should therefore be beneficial to the 

performance of the original model.  

In contrast to the original model, all domain-specific models exhibit great performance on their 

according test set, with the exception of MSK loc head neck, which still outperforms the 

original model. During training minor instances of overfitting can have occurred, since some 

domains contain a low number of samples [10]. In this context, the normalization of the training 

data helps mitigating the adverse effects of overfitting [63]. These results are expected and 

show that training the domain-specific models has been successful.  

The examination of the F1-Score performance of the domain-specific models has revealed an 

allocation between 5 better performing models and 5 poorer performing models. From the 

statistical data no distinct impact factor can be identified that can be accounted for the failure 

of some domain-specific models. Therefore, analyzing the image data and CAM patterns of the 

domains is necessary to gain further insights in the underlying factors contributing to both 

superior and inferior performance.  

CAM patterns of the original model indicate that a bias is present in the HAM loc body training 

dataset, since the model learned to classify nevus images based on the bottom portion of the 

image. This bias could impede a reliable recognition of melanoma samples within the test set. 

When the bottom portion of a melanoma sample shares similarities with a nevus image, the 

model may incorrectly classify it as a nevus. A Comparison of all available samples further 

indicated a bias in the hue of the images, since the model was more successful in classifying 

images with a red hue. Therefore, the training dataset of the HAM loc body domain has been 

examined for a homogenous bottom area and a red hue in the nevus samples. The investigation 

of the random sample affirmed the presumed biases. This presents a suitable explanation for 

the subpar performance of the original model on its own test set. 

Since the HAM loc body dataset contains color and location biases, and considering that the 

activation maps are influenced by these biases, it becomes necessary to investigate whether the 

improved performance of certain domain-specific models can be attributed to similar activation 

patterns. The HAM loc head neck model demonstrates significantly different activation patterns 

depending on the classification outcome. These patterns remain consistent, as the model is 

tested on the target domain. The activation patterns and the performance bear a resemblance to 
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the original model. This indicates a link between the similarity of CAM patterns and the 

resulting performance on the target domain.  

The examination of the CAMs of the BCN loc head neck model revealed similar patterns and 

observations to those found in HAM loc head neck. This adds to the presumption that similar 

patterns are manifesting in higher performance. So far, the best performing models have been 

trained on a loc head neck body region. This could lead to the assumption that the domain shift 

between these domains and HAM loc body is smaller, potentially resulting in improved model 

performance. The cosine similarity between nevus images of HAM loc body and the target 

domains states that HAM loc head neck contains the most dissimilar nevus samples inside the 

HAM domain [10]. Furthermore, BCN loc head neck nevus images are least similar of all the 

domains. The trend could however be reversed, as models trained on domains with low nevus 

similarity to HAM loc body tend to exhibit higher sensitivity values. This phenomenon might 

be attributed to the binary classification task, in which the derived models would tend to decide 

for melanoma, resulting in elevated sensitivity and a positive influence on the F1-Score.  

Moreover, the MSK loc body model as the third best performing model challenges the 

assumption that HAM loc body shares similarities with the loc head neck domains. In all 

previously examined domains, CAM patterns of domain specific models remained relatively 

consistent when confronted with target domain images. The MSK loc body model however 

unexpectedly shows a tendency for bottom-bar or frame-shaped nevus CAM patterns on the 

target domain. Unfortunately, no indicators for this phenomenon can be identified. This 

undeniably proves the thesis that a neural networks activation pattern varies as the domain is 

changed within the ISIC-Dataset. So far this is observation is exclusive for the MSK loc body 

model and indicates an elevated generalization capability.  

For all good performing domain specific models, a consistent frame or a bottom bar pattern can 

be identified for nevus CAMs in the source domain. Interestingly, this pattern either gains 

intensity or establishes when the model transition to the target domain. This observation 

indicates that the presence of a peripheral activation pattern is advantageous in testing on the 

HAM loc body dataset. 

Among the five poorly performing domain-specific models, BCN loc body stands out as a 

dataset with a balanced melanoma share and a large number of training images. Based on 

statistical values, models trained on BCN loc body would be expected to exhibit good 

performance on the HAM loc body test set. Consequently, the CAMs of this model are 

particularly significant for the identification of failure modes. When confronted with HAM loc 

body test samples, the BCN loc body model’s CAMs suffer a decrease in plausibility. Notably, 
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the previously observed frame pattern, which was prominent in better-performing models, is 

conspicuously absent in cases of low performance. The observed overrepresentation of samples 

with red hue in the misclassified samples is an additional indication for the low performance 

on the target domain.  

These observations indicate a connection between performance on the HAM loc body test set 

and the presence of a frame or bottom-bar nevus CAM pattern. However, it is worth noting that 

no indicative patterns can be derived from the melanoma CAMs since they are spot-wise and 

sample dependent. These findings prompt the development of a theory that postulates the 

existence of underlying concurrent location bias in the training datasets of some domains. To 

substantiate this theory, the bias needs to be eliminated from the target dataset before the 

performance and CAMs of the successful domain-specific models is reassessed. If the removal 

of the bias leads to a significant performance drop in the five better performing models, then 

the theory can be considered as substantiated.  

6.3 Effects of Augmentation on Performance and Activations 

6.3.1 HAM Loc Body as the Target Domain 

As elucidated before, the augmentation of the target domain is an essential step in proving the 

concurrent biases theory. Therefore, the examination of performance with respect to the 

corresponding CAM patterns is deemed to provide insights. 

The random augmentation of the nevus images did not decrease the performance of domain-

specific models that were trained on domains where concurrent bias is presumed. Surprisingly, 

the frame pattern, characteristic for nevus activations, is still discernible across all domains that 

exhibited better performance on the non-augmented HAM loc body test set. The illustrated 

association between performance on the non-augmented HAM loc body dataset and the 

intensity of the nevus frame-pattern of the CAMs in Figure 23 needs to be further examined. 

As the cropping of the images did not successfully eliminate the size difference between the 

melanoma and nevus samples, the augmentation was unable to address this aspect of the 

presumed biases. Since no tendency for an intense bottom-bar activation pattern is discernible 

in the nevus samples, this bias seems to have been successfully eliminated.  

Based on these findings, it appears that performance is not strongly associated with the 

homogenous bottom region of the nevus samples. Instead, it is plausible that performance is 

linked to the peripheral regions in the nevus samples Considering that the domain-specific 

model was trained on images with a particular aspect ratio, it becomes evident that this specific 
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factor needs to be addressed to dissipate the aspect ratio-driven frame pattern. This prompts the 

additional resizing within the augmentation process of the HAM loc body test images. 

In the experiment with the resized images, the frame patterns on nevus samples were 

successfully eliminated. The corresponding statistical test results support the theory that the 

frame pattern is responsible for the elevated performance on the non-augmented HAM loc body 

test set. Despite the significant difference between the resized input images and the initial full-

scale training images, only domains with a presumed concurrent bias experienced a significant 

drop in performance. Unexpectedly, the HAM loc palms soles dataset gained 0.271 in F1-Score 

performance. Although the HAM loc palms soles model exhibited a frame-shaped activation 

pattern for nevus, the activation area still covered larger areas of the skin lesion. Speculatively, 

this phenomenon may have contributed to the improved performance of this specific model, 

even though the formation of the frame pattern was averted by augmentation. 

6.3.2 The Most Suitable Saliency Method for Quantification 

An unexpected deviation from the previous results emerged when a ResNet18 model was 

trained on the augmented HAM loc body dataset. As depicted in Figure 25, the implausible 

Grad-CAM activation cannot be attributed to model failure or other factors. It is unlikely for a 

well-performing model to exhibit zero activation for one class, while deciding against the class 

with rational activation. In pursuit of quantifying saliency, a reliable saliency method has to be 

ascertained.  

Among the examined saliency methods solely Grad-CAM-Elementwise has exhibited sane 

activations for both classes. Therefore Grad-CAM-Elementwise was directly compared to the 

previously employed Grad-CAM. The benchmark results indicate that Grad-CAM is unsuitable 

for quantifying the impact of augmentation and domain adaptation on CAMs within domain 

shifted datasets.  

The observation of potential annulation of activation in Grad-CAM is presumably attributed to 

the close proximity of the features in the fourth layer of the ResNet18 model, the layer to which 

Grad-CAM is applied. This proximity issue is compounded by the training of the model on a 

strongly imbalanced two-class dataset, where feature maps are likely to predominantly 

represent features of the overrepresented class. Since melanoma features and nevus features 

should be close nearby, they are inevitably superimposed within the standard 7x7 resolution of 

the layer 4 feature maps. Consequently, when Grad-CAM or HiResCAM aggregates all feature 

maps, this consolidation could result in the vanishing impact of melanoma feature maps.  
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Grad-CAM-Elementwise applies ReLU before summing the elementwise product of gradients 

and feature maps. This approach disregards the influence of negative product values, allowing 

the contribution of melanoma feature maps to persist. As the only difference between Grad-

CAM-Elementwise and HiResCAM is the application of ReLU activation before summation, 

this explanation appears logically sound. 

The issue did not occur before, because melanoma and nevus activation were not as precisely 

superimposed or class imbalance was less severe. The alignment of activations occurred here 

due to the augmentation of training data. The augmentation led to a focus on the skin lesion, as 

it randomizes other features and effectively mitigates biases. 

6.3.3 HAM Loc Body as the Source Domain 

The augmentation of HAM loc body as the target domain initially focused on verifying biases 

and did not benefit the classification performance of the domain-specific models. However, 

with the introduction of data augmentation within the HAM loc body domain, the focus has 

transitioned towards seeking performance improvements. In this testing scenario, the effect of 

augmentation on the CAMs is particularly interesting in view of dataset bias mitigation.  

A baseline is necessary to evaluate effects of augmentation or domain adaptation in regards of 

performance as well as qualitative and quantitative CAM analysis. For this reason, testing of 

the original model was conducted on all target domains.   

The analysis of Table 8 yielded the that the previously observed elevated performance of some 

domain-specific models on the HAM loc body test set is not reciprocal This discrepancy can 

likely be attributed to the homogenous bottom area that the original model focuses on, when 

predicting nevus. This bottom area is not exclusive to nevus samples within the target domains. 

Hence, the original model exhibits tendentially low sensitivity on the target domains.  

Performance on the HAM loc head neck test set is the highest, which coincides with the HAM 

loc head neck model performing best on the HAM loc body test set. One potential explanation 

lies in the dissimilarity of nevus images [10], which could result in higher sensitivity, especially 

if melanoma images exhibit similarities. Conversely, the lowest performance was observed on 

the MSK age under 30 domain’s test set. Upon analysis of the dataset and the corresponding 

activations it became evident that the skin lesions in this particular dataset are tendentially 

smaller and some incorrectly classified actual melanoma contain a red hue. These factors could 

be the primary contributors to the low performance of the original model.  

The established baseline performance, enables the comparative evaluation of the 

augmentation’s effects on performance. From Figure 29 it becomes apparent that the bottom 
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bar pattern of the original model has been eliminated by source domain augmentation. This 

pattern certainly originated from the previously discussed dataset bias inside the HAM loc body 

training dataset, where uniform bottom regions were clearly overrepresented in nevus samples. 

This bias induced nevus activation pattern led to low sensitivity of the original model across all 

target domains, consequently negatively influencing the F1-Score performance. The successful 

elimination of the nevus bias and the associated bottom bar activation pattern has had a positive 

influence on sensitivity and performance in 7 out of 10 domains. 

Prior to augmentation, actual melanoma samples within the loc palms soles domains were 

incorrectly classified as a nevus because of the bottom bar activation pattern. Consequently, the 

removal of the activation pattern has proven particularly advantageous for enhancing 

performance within the loc palms soles domains. 

6.4 Comparison of Statistical and Activation-Differences between 

Augmentation and Domain Adaptation 

6.4.1 Statistical Comparison 

Since DANN is one of the most well-established approaches [45], it is especially interesting to 

compare it to the performance enhancement that augmentation yielded. With respect to the 

nevus bias inside the HAM loc body dataset being one of the primary reasons for the original 

model’s failure on the target domains, it is particularly interesting to see how domain adaptation 

without augmentation handles the biased source dataset.  

As expected, DANN was able to improve performance more than the extensive augmentation 

of the training data. Unexpectedly, DANN worsened performance in 3 out of 10 domains. This 

circumstance is not entirely new, since the low gain in performance or stagnation was observed 

in association with low melanoma share in the target domain in previous works [10], [64]. 

Therefore, it is plausible that the tendentially lower sensitivity of the DANN models impacts 

the F1-Score performance more in domains with overrepresented nevus samples. The results, 

presented in these works, were obtained by averaging over five seeds. This could explain the 

distinct decrease observed on HAM age under 30 and BCN age under 30. However, the domains 

that benefited most from the domain adaptation in other works do not coincide with the domains 

with increased scores. For this, no underlying cause can be identified. It is however possible 

that the different backbone network led to different performance [64].  

In direct comparison to the augmentation approach, the augmentation is preserving the 

specificity of the classifier. This does not significantly lessen the classifiers performance on 

domains with low melanoma share. Notably, both approaches managed to outperform the 
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original HAM on different target domains. Upon comparison of domains which now show 

excellent performance, it appears that augmentation and domain adaptation complement each 

other in this regard. This sparks the idea that extensive augmentation and domain adaptation 

could compensate their shortcomings. Further details of this approach are discussed in the 

Outlook section.  

6.4.2 Grad-CAM-Elementwise Activations 

Previous studies have demonstrated the effectiveness of unsupervised domain adaptation 

(UDA) techniques in dermoscopic datasets within the ISIC domains [10], [64]. Here, the impact 

of DANN on network activations is explored. The objective is to examine whether new insights 

into the influential factors of UDA can be obtained through the analysis of CAMs generated by 

DANN models.  

Figure 31 reveals a significant alteration in activation patterns across the domains due to domain 

adaptation. The previously observed nevus frame shape pattern, distinctive to the domain-

specific models, is discernible with varying intensity in the CAMs for both classes across all 

domains, as Figure 31 illustrates. In some domains, the lower portion of the frame pattern 

exhibits higher intensity, indicating that the bottom-bar bias has not been thoroughly removed. 

However, the overall perfromance improvement achieved with domain adaptation surpasses 

that of augmentation. This indicates that this bias is not necessarily disadvantageous for 

classification performance of DANN models.  

 

Figure 37: Example of the reintroduction of the frame shape activation to CAM patterns of the DANN models. 

The presented sample is a nevus (left image), classified correctly by all displayed models along with the CAM 

(middle image) and its heatmap overlay (right image). (created with Matplotlib and GIMP 2.10) 

Interestingly, the patterns established by DANN remain mostly consistent regardless of the 

domain. This suggests that, across all domains, the background plays a role in accurately 

classifying samples inside the target domains. Remarkably, the reintroduction of the domain 

specific activation patterns occurred without access to the target domain labels (see Figure 37). 

Since DANN’s optimization objective is to align source and target domain feature vectors to be 

indistinguishable, this pattern emerged without the utilization of labels. This marks the initial 

point of a potential explanation, concerning dataset imbalance as a primary influential factor in 

unsupervised domain adaptation.  
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Within the process of unsupervised domain adaptation, the influence of image features from 

the target domain on the resulting DANN model depends on their relative frequency. In case of 

an underrepresentation of melanoma samples, the majority of the influence originates from 

nevus samples. Therefore, the resulting feature extractor provides the classifier with features 

that predominantly resemble those of nevus samples. In the process, actual melanoma samples 

of the source domain are modified so that their resulting feature vector is more similar to a 

nevus feature vector. As a result, the classifier learns to recognize melanoma based on patterns 

previously associated with nevus. According to the observed CAM patterns, the classifier 

noticeably decides for melanoma based on the nevus frame pattern observed in the source-

domain models. This leads to higher sensitivity on a balanced target domain test set. 

Conversely, in an unbalanced target domain test set, the tendency for the melanoma class is 

unfavorable for the specificity, increasing the likelihood of misclassifying an actual nevus as 

melanoma. It is important to emphasize that this explanation is solely based on the observation 

of the CAMs and requires further research and experimentation for validation. This explanation 

is primarily applicable to a binary classification problem and limited to the DANN architecture.  

Regardless of the particular explanation regarding the source of class imbalance performance 

issues, a significant conclusion can be drawn. The previously discussed results, emphasize the 

importance of conducting a previous assessment for class imbalance by experts prior to 

unsupervised domain adaptation. In case of identified severe class imbalance, other proposed 

domain adaptation approaches like a Feature and Label Distribution Co-Alignment Model 

(COAL) [65], which are explicitly designed to address class imbalance, have to be considered.  

Concerning other influential factors on UDA, mentioned by Chamarthi et al. [64], no additional 

insights can be gained by the examination of CAMs. Domains with high melanoma share also 

consistently exhibited improvement, while no substantial difference in activation patterns could 

be identified. Age under 30 domains were also found to pose challenges for adaptation, yet no 

clear indicators could be determined from the activation difference. Large datasets have been 

found to be advantageous, which the statistical results have affirmed. The according CAMs 

revealed a focus on skin lesions, though this characteristic is not exclusive to large datasets. 

Consequently, the insights obtained by assessing Grad-CAM-Elementwise activations remain 

very limited in this context.  
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6.5 Evaluating Effects on Saliency of Augmentation and Domain Adaptation 

As dermatologists use various diagnostic criteria, it presents a challenge for non-specialists to 

determine the most plausible CAM for a specific sample. Nonetheless, dermatologists 

predominantly focus on variables inside the skin lesion to recognize melanoma [66]. Therefore, 

activation can generally be regarded as plausible in case the CAM activation overlaps with the 

skin lesion. Recent research has explored the plausibility of Grad-CAM activations in 

dermoscopic images, accompanied by subsequent attempts to quantify their plausibility.  

Gamage et al. [67] employed Grad-CAM and ISIC2018 cell network segments, referred to as 

attribute masks, which only encompass portions of a complete skin lesion segment. They aimed 

at gauging neural network activation for their plausibility. Their investigation revealted that 

Grad-CAM++ exhibited better coverage of the attribute masks than Grad-CAM, although the 

same network has been employed. Furthermore, they suggested the use of IoU for quantification 

as a possible extension of their work. Their findings align with the previously discussed results, 

underscoring the significant impact of the chosen saliency method on CAM results and their 

plausibility. 

Further studies by Lee et al. [68] and Nunnari et al. [69] quantified the alignment of skin lesion 

segments and Grad-CAM activations in the context of differing network architectures. They 

tried to determine which network architecture exhibited a stronger focus on critical regions 

inside the images. In both studies the authors decided for a binarization of the CAMs along with 

an optimization of the threshold. Lee et al. proved that their proposed network architecture was 

able to achieve 0.05 higher IoU. Notably the classification performance difference was only 

0.011. These findings therefore do not necessarily contradict the previously presented results 

of unassociated wIoU and F1-Score. Nunnari et al. illustrated that VGG16 is showing more 

plausible activation in correctly classified melanoma than in incorrectly classified actual 

melanoma. In contrast, ResNet50 CAMs were not able to provide this benefit, despite better 

classification performance. They concluded that the higher resolution saliency maps provide 

greater explanatory value for dermatologists.  

As the available research on quantification of Grad-CAM activations is limited, wIoU was 

established as a custom approach in order to gain information about the overall plausibility of 

activations. The quantification of CAMs using a wIoU metric is unique in research until this 

point. 
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Because no model weights for the skin lesion segmentation task were provided by the BCDU-

Net GitHub6 repository [62], the model had to be retrained. However, due to the tedious training 

process, the training has been finalized after 10 epochs. According to the BCDU-Net 

publication [27], comparable validation performance was already achieved after 10 epochs of 

training. Since the training did not extend to 100 epochs, an evaluation of the BCDU-Net on its 

test set was necessary to assess the performance of the BCDU-Net. A detailed examination of 

the results led to the conclusion that the tolerance range of the IoU is estimated to be 26%. 

Therefore, all relative changes in wIoU beyond 26% are considered significant.  

Table 12 reveals that no meaningful connection between performance and wIoU can be 

discerned for either augmentation or domain adaptation. This unexpected finding suggests that 

a high-performing model does not necessarily prioritize the skin lesion. Notably, augmenting 

HAM loc body as the source domain resulted in the highest overall wIoU. This underscores the 

independence of wIoU and classification performance, since augmentation did not yield higher 

performance improvement than DANN. As discussed previously, the presence of bias within 

the training datasets for DANN models does not appear to be disadvantageous for good 

performance.  

The bias-induced activation pattern of the original model, which predominantly led to the 

misclassification of melanoma, likely explains why augmentation led to improved wIoU across 

all target domains, even as classification performance remained stagnant or declined. 

Augmentation effectively removed this bias, causing the model to consistently prioritize the 

skin lesion This resulted in significant performance enhancements, particularly in domains with 

previously low sensitivity. 

It is necessary to emphasize the crucial role of explainability in the application of AI in clinical 

scenarios. Therefore, it is of great interest whether wIoU of correctly and incorrectly classified 

images are different to each other. Specifically, a dermatologist should be able to discern correct 

and wrong classification based on the sensibleness of a CAM.  

When analyzing the Results in Table 13, it appeared that correctly classified samples do not 

exhibit more plausible saliency than the incorrectly classified samples for augmented models. 

This observation coincides with the findings of Nunnari et al. [69] and challenges the idea that 

dermatologists can trust neural networks in case of high plausibility of CAMs in diagnosing 

melanoma.  

                                                 
6 https://github.com/rezazad68/BCDU-Net/tree/master 
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For DANN models, all target domains outside HAM exhibit better wIoU on correct than on 

wrong samples While most of these differences in wIoU metrics fall within an acceptable 

tolerance range, this pattern warrants further investigation due to the clear separation observed 

between HAM and other domains. 

This particular segregation is accompanied by a more substantial improvement in classification 

performance for target domains beyond HAM. However, it's important to note that this 

observation may be attributed to the influence of class imbalance. Within this context, it 

becomes evident that HAM domain-specific models lack a focus on skin lesions. Specifically, 

they tended to exhibit no activation on critical regions in nevus and minimal activation on 

melanoma samples. The domain adapted models therefore expressed a lack of plausible 

activation and focused on peripheral regions to classify the images. This behavior appears 

logical since these peripheral features were suitable to high performance on the target domain. 

It's worth emphasizing that this phenomenon is distinct from the previously discussed frame 

pattern, as even the BCN loc head neck DANN model demonstrates a higher wIoU for correctly 

classified samples.  

Figure 37 illustrates this phenomenon, where the BCN loc palms soles domain-specific model 

exhibits low activation on skin lesions, resulting in a limited wIoU advantage for correctly 

classified samples, despite a great improvement in F1-Score, for the corresponding DANN 

model. This observation indicates that the CAMs of domain adapted models may only provide 

practical benefits for the diagnosing dermatologists in case the target domain does not contain 

bias, influencing the DANN model to focus on the skin lesion. However, it is important to 

acknowledge that it is challenging to identify whether the target domain contains bias that 

would influence the model's focus on skin lesions prior to domain adaptation.  

Additionally, some target domains exhibit significant difference in wIoU between correctly and 

wrongly classified samples, which are associated with discrepancies in skin lesion sizes. The 

observed significant differences are therefore not relevant for the idea of assistive saliency maps 

in melanoma diagnosis.  

These findings underscore the findings of Nunnari et al. [69] and contest the ability of saliency 

maps of ResNet models to effectively assist dermatologists in diagnosing melanoma or help 

establishing trust in ai based skin cancer classification. Across all examined scenarios, saliency 

maps of neural networks do not exhitbit significant difference in wIoU between correctly and 

incorrectly classified melanoma samples. The sole exception is observed in the subjective CAM 

analysis of the inter-domain model.  
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In conclusion, the combination of Grad-CAM-Elementwise with domain adapted or augmented 

ResNet models is not suited for establishing trust in AI-based skin cancer classification. 

Nevertheless, the application of saliency maps in domain adapted or augmented models is best 

suited for model examination, enabling the recognition of patterns in activations and the 

identification of biases in the training data. Therefore, it also serves as a valuable identification 

tool for failure modes in cases of low model performance.  

7. Conclusion 

The results and their interpretation enabled further insights into influential factors of domain 

shift and the behavior of saliency methods in domain shift scenarios. In accordance to the 

initially formulated objectives, the primary findings of this work shall be summarized. 

The initial findings and their interpretation have revealed the potential advantage of inter-

domain models’ Grad-CAM activations for dermatologists in diagnosing skin cancer.  

The examination of causes for domain shift yielded that domain-specific models tend to 

perform well on each other’s test sets when they exhibit similar activation. This observation 

emphasizes that Grad-CAM allows insights regarding failure modes or advantageous patterns 

within the domain training data or the trained models. Specifically, location and hue biases were 

identified in the HAM loc body domain, along with concurrent location and or hue biases inside 

other domains. Additionally, it became apparent that biases inside the source domain exert a 

dominant influence on the CAM patterns observed in the derived model. 

It is important to note that significant changes in Grad-CAM activations were exclusively 

observed with the MSK loc body domain-specific model as the target domain was changed. 

This observation confirms that domain-specific models generally have a limited generalization 

capability.  

During the experiments it became evident that Grad-CAM output is not suited for quantification 

of CAMs in binary and domain specific skin cancer classification tasks. However, Grad-CAM-

Elementwise guarantees plausible activation maps. These findings advise caution when 

employing Grad-CAM in binary skin cancer classification tasks. The use of Grad-CAM-

Elementwise, however, was found to be more reliable.  

The extensive augmentation applied to both the source and target domain changes the 

activations significantly and concurrently improves classification performance. Therefore, 

extensive augmentation is an effective tool in mitigating geometric bias and is strongly 
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recommended in order to obtain models with enhanced generalization capabilities, capable of 

adapting to previously unseen domains.  

Domain adaptation uses dataset bias to its advantage to optimize performance on the target 

domains. Subsequently, CAMs do not necessarily show plausible activations in models with 

superior performance on the target domain. Additionally, a plausible explanation for the 

underlying mechanism for performance issues of unsupervised domain adaptation in case of 

dataset imbalance has been proposed. However, further research on the influential factors is 

needed as the analysis of CAMs only offered limited insights. 

It was observed that a combination of domain adaptation and augmentation can address their 

respective shortcomings. Further investigation is needed, particularly regarding the impact of 

this combination on CAMs.  

In the context of CAM quantification, no connection between performance and wIoU in domain 

adapted models and the augmented models could be observed. Therefore, models exhibiting 

high performance do not consistently prioritize skin lesions. Moreover, the plausibility of Grad-

CAM-Elementwise activation does not indicate whether domain adaptation or augmentation 

led to significant performance improvements.  

In contrast to the inter-domain model it appears that with augmented or DANN models, CAMs 

of correctly classified images are not necessarily more plausible than those of incorrectly 

classified images. This implies that the Grad-CAM-based explainability methods have limited 

potential for establishing trust in AI-based skin cancer classification in the scope of domain 

adapted models.  

A valuable insight that extends to AI-based classification in other safety-critical medical 

domains is primarily Grad-CAM’s inability to reliably display activation in binary 

classification, where one object may portray both classes. Furthermore, domain adaptation 

utilizes target domain dataset bias to improve performance on the target domain, which 

potentially leads to a model exhibiting implausible activation along with great performance in 

any application. 
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7.1. Outlook 

The presented results and their conclusions offer opportunities for various extensions. As 

previously mentioned, augmentation and domain adaptation improved performance in different 

target domains. This indicates the necessity to explore the impact of a combination of 

augmentation and domain adaptation on performance and Grad-CAM-Elementwise activation. 

Another aspect worth investigating is the influence of color bias within the dataset, as identified 

in the HAM loc body domain. A color preprocessing of the nevus images marks a starting point 

for this investigation. Furthermore, finetuning hyperparameters, such as batch size, can 

significantly impact the resulting model’s performance in this context. 

The quantification of saliency maps can be extended by the incorporation of additional 

quantification metrics. Boggust et al. [26] have proposed Ground Truth Coverage (GTC) and 

Saliency Coverage (SC). GTC reaches its maximum when the ground truth is entirely 

encompassed by the saliency, while SC maximizes when the ground truth covers the entire 

saliency. The introduction of weighted variants of these metrics has the potential to provide 

additional insights into the quantification of activation patterns. 

Lee et al. [68] successfully directed the attention of the model towards the skin lesion through 

alterations in network architecture. However, adjustments to the training process could also 

contribute to the model’s ability to produce plausible activation of domain adapted models on 

dermoscopic images. In the context of domain adaptation, a notable work by Zunino et al. [24] 

demonstrated the effectiveness of their Explainable AI (XAI) training strategy in enhancing 

generalization, while preserving performance on the source domain. They utilized binary 

annotation maps to determine which image regions contain domain invariant features, resulting 

in reinforced activations in the annotated area. In the context of skin cancer classification, this 

annotated area corresponds to a skin lesion segment. For this purpose, the previously described 

BCDU-Net can be employed. It would be interesting to explore how the XAI training strategy 

influences Grad-CAM-Elementwise activations in domain shift scenarios.  

As previously mentioned, Nunnari et al. [69] have also investigated the overlap between Grad-

CAM saliency maps and skin lesion segments. ResNets low feature map resolution posed 

various challenges and presumably limits the application of Grad-CAM in medical applications. 

To enhance the plausibility of saliency maps, their approach is worth pursuing within the scope 

of domain adaptation. Given that VGG16 does not achieve state-of-the-art performance in skin 

cancer classification, it is necessary to explore alternative CNN architectures for generating 

high-resolution CAMs that effectively capture high-level features.  
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