Camps-Valls, Gustau und Gerhardus, Andreas und Ninad, Urmi und Varando, Gherardo und Martius, Georg und Balaguer-Ballester, Emili und Vinuesa, Ricardo und Diaz, Emiliano und Zanna, Laure und Runge, Jakob (2023) Discovering causal relations and equations from data. Physics Reports, 1044, Seiten 1-68. Elsevier. doi: 10.1016/j.physrep.2023.10.005. ISSN 0370-1573.
PDF
- Verlagsversion (veröffentlichte Fassung)
6MB |
Kurzfassung
Physics is a field of science that has traditionally used the scientific method to answer questions about why natural phenomena occur and to make testable models that explain the phenomena. Discovering equations, laws, and principles that are invariant, robust, and causal has been fundamental in physical sciences throughout the centuries. Discoveries emerge from observing the world and, when possible, performing interventions on the system under study. With the advent of big data and data-driven methods, the fields of causal and equation discovery have developed and accelerated progress in computer science, physics, statistics, philosophy, and many applied fields. This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of physics and outlines the most important challenges and promising future lines of research. We also provide a taxonomy for data-driven causal and equation discovery, point out connections, and showcase comprehensive case studies in Earth and climate sciences, fluid dynamics and mechanics, and the neurosciences. This review demonstrates that discovering fundamental laws and causal relations by observing natural phenomena is revolutionised with the efficient exploitation of observational data and simulations, modern machine learning algorithms and the combination with domain knowledge. Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems.
elib-URL des Eintrags: | https://elib.dlr.de/201063/ | ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||||||||||||||
Titel: | Discovering causal relations and equations from data | ||||||||||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||||||||||
Datum: | Dezember 2023 | ||||||||||||||||||||||||||||||||||||||||||||
Erschienen in: | Physics Reports | ||||||||||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||||||||||||||
Band: | 1044 | ||||||||||||||||||||||||||||||||||||||||||||
DOI: | 10.1016/j.physrep.2023.10.005 | ||||||||||||||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1-68 | ||||||||||||||||||||||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||||||||||||||||||||||
ISSN: | 0370-1573 | ||||||||||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||||||||||
Stichwörter: | causal inference, causal discovery, complex systems, nonlinear dynamics, equation discovery, knowledge discovery, understanding, artificial intelligence, neuroscience, climate science | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||||||||||||||||||||||||||||||||||||||
Standort: | Jena | ||||||||||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenanalyse und -intelligenz | ||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Gerhardus, Andreas | ||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 08 Jan 2024 13:38 | ||||||||||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 08 Jan 2024 13:38 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags