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a b s t r a c t

Physics is a field of science that has traditionally used the scientific method to answer
questions about why natural phenomena occur and to make testable models that explain
the phenomena. Discovering equations, laws, and principles that are invariant, robust,
and causal has been fundamental in physical sciences throughout the centuries. Discov-
eries emerge from observing the world and, when possible, performing interventions
on the system under study. With the advent of big data and data-driven methods,
the fields of causal and equation discovery have developed and accelerated progress
in computer science, physics, statistics, philosophy, and many applied fields. This paper
reviews the concepts, methods, and relevant works on causal and equation discovery
in the broad field of physics and outlines the most important challenges and promising
future lines of research. We also provide a taxonomy for data-driven causal and equation
discovery, point out connections, and showcase comprehensive case studies in Earth
and climate sciences, fluid dynamics and mechanics, and the neurosciences. This review
demonstrates that discovering fundamental laws and causal relations by observing
natural phenomena is revolutionised with the efficient exploitation of observational data
and simulations, modern machine learning algorithms and the combination with domain
knowledge. Exciting times are ahead with many challenges and opportunities to improve
our understanding of complex systems.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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‘‘As in Mathematics, so in Natural Philosophy, the Investigation of difficult Things by the Method of Analysis ought ever
to precede the Method of Composition. This Analysis consists in making Experiments and Observations, and in drawing
general Conclusions from them by Induction, and admitting of no Objections against the Conclusions, but such as are taken
from Experiments, or other certain Truths ... By this way of Analysis, we may proceed from Compounds to Ingredients,
and from Motions to the Forces producing them; and in general, from Effects to their Causes, and particular Causes to
more general ones, till the Argument end in the most general. This is the Method of Analysis’’ (Newton, 1718).

. Introduction

This paper reviews the recent advances in causal discovery and equation discovery from data. Both problems are conun-
rums for scientists and philosophers of science. After all, Science is about studying, discovering, and understanding the
tructure and behaviour of the physical and natural world through observation and experimentation. Understanding the
ystem’s structure involves performing interventions on the systems to evaluate their responses. However, interventional
xperiments are often not feasible for economic or ethical reasons, so relying on observations, simulations, and domain
nowledge must be exploited. In recent decades, discovering causal relations and underlying governing laws from data
ave emerged as exciting fields of research that promise advancing science.

.1. Understanding in the physical sciences

Fig. 1: Standard loop in understanding complex systems following the
standard scientific method. Understanding involves experimentation by
refining a descriptive mechanistic model. The initial model hypothesis
is tested in practice and, through experiments, yields observations that
are confronted with the model’s predictions. The unexplained processes
are then used to improve the model’s misspecification and predictions.

A pertinent question arises here; what is understanding?
Understanding is the ability to comprehend and make sense
of processes to gain a deeper knowledge of a system. Under-
standing involves analysing information, making (eventually
causal) connections, and coming to conclusions. Whether
the conclusions should be falsifiable has been the subject
of active discussion in the Philosophy of Science [1,2]. We
aim to understand complex systems by following the scien-
tific method; make an observation, ask a scientific question,
form a hypothesis, theory, model, or explanation of the phe-
nomena, and make predictions, which are ultimately tested
and whose results are used to make new hypotheses or
predictions (see Fig. 1).

Understanding involves reasoning and thinking critically
about a subject, a system’s behaviour, or a problem. Un-
derstanding and explaining how a system works is more
complicated than making predictions about the system’s be-
haviour. The Oracle of Delphi gave accurate predictions of
the future and the optimal course of action, but the lack of
understanding frequently led to disaster. True understanding
is about making (truly accurate) predictions and, more importantly, gaining knowledge of the causal chain. Science
generally aims to answer causal questions, infer causal relations, and attain mathematical models (mainly laws and
equations) that work well in most situations, explain the system and underlying processes, and are invariant across space
and time. Without it, we cannot predict the consequences of our actions (interventions) or analyse when, where and why
things went wrong (counterfactuals) [3].

Yet, what do we want to understand? And how do we generally do it? In physical sciences, one typically analyses
phenomena and instantiations of the physical world, uses observations, and refines and tests models. For learning
about the system, one aims to (1) characterise its complexity in terms of trajectories, persistence, stability and collapse,
bifurcations and viability boundaries [4–7], (2) obtain explanatory and causal models of their behaviour [8–10], and
(3) discover and formalise general laws, governing equations, and parameterisations [11–13]. These three components
allow us to advance science and technology. However, in many systems, governing equations and causal relations are
(partially) unknown, and recourse to first principles is untenable. Resorting to algorithms that can discover laws, governing
equations, and causal relations from data may thus constitute a paradigm shift that promises to accelerate science.

1.2. Scientific discovery

Scientific discovery is the process or product of successful scientific inquiry. Objects of discovery can be things,
events, processes, causes, properties, theories, hypotheses, and their characteristics. Philosophical discussions of scientific
discovery vary widely in scope and definition, from the narrowest sense of a ‘‘eureka moment’’ to the broadest sense
of a ‘‘successful scientific endeavour’’. The utilisation of datasets to create and test new hypotheses in philosophical
3
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iscourse has led to a multifaceted and intricate discussion regarding the precise definition and potential misuse of the
erm ‘‘discovery’’.

Human nature aims to discover. Always. Since the Bronze Age.2 Generations have created and discovered new
rinciples, techniques, and operations through millennia. Right after the Neolithic Revolution, the world stopped except
or some remarkable technological advances, like the invention of the water wheel (476–221 BC) and the windmill (ca
44 BC). Romans were amazed by stories of what Archimedes (287–212 BC) had been able to do. But, bold as it may
ound, one may claim that modern science was invented between 1572 when Tycho Brahe saw a nova or new star, and
704 when Newton published his Opticks [14]. What happened in that period prepared humanity and scientists for a
ew Era: a research program endorsed with a scientific method that allowed scrutinising new theories and validating or
efuting hypotheses and models of the world, and all that in the light of evidence and observations. After fitting many
voids to observational data, Kepler discovered the laws of planetary motion (1609) and needed four years to discover
ars’ orbit was an ellipse. The scientific method was slow but sure. Galilei discovered the law of falling bodies (1638) by
ropping two cannonballs of different masses from the tower of Pisa and measuring the effect of mass on the fall rate to
he ground. And in 1662, Boyle discovered the law of ideal gases. Only ten years later, in 1672, Newton discovered that
hite light is a mixture of distinct coloured rays, and in 1687 he formulated the classical mathematical description of the

undamental force of universal gravitation and the three physical laws of motion. The triumph of Newtonianism marks
he end of the beginning of scientific discovery.

The history of science is a long and complex narrative punctuated by moments of major scientific revolutions [15].
uhn identified a general pattern: A discovery is not a simple act but an extended, complex process that culminates in
aradigm changes. The first scientific revolution occurred in the 16th and 17th centuries when the Copernican revolution
hallenged the traditional Ptolemaic view of the universe [16]. The next major scientific revolution was the Enlightenment
uring the 18th century, which saw the emergence of the scientific method and the development of modern physics and
hemistry, from formulating the laws of motion to discovering electricity. This period also saw the emergence of scientific
ocieties, which helped to propagate and popularise scientific ideas. The 19th century saw the emergence of the theory
f evolution, which revolutionised the field of biology [17]. This revolution was followed by the rise of modern genetics,
hich further expanded our understanding of the evolution of life [18]. The 20th century saw the emergence of the
uantum revolution, which revolutionised our understanding of the physical world as it could not be fully explained
y classical physics [19]. Revolutions happen only gradually, as it takes time for the scientific community to recognise
‘both that something is and what it is’’ [15]. Eventually, a new paradigm becomes established, and the strange phenomena
ecome the expected phenomena.
The idea that there is such a thing as ‘the Scientific Revolution’ and that it took place in the 17th century is thus
fairly recent one [20]; some have argued that it can be seen as the construction of intellectuals looking back from

he 20th century [14]. Like the term ‘Industrial Revolution’, the idea of a scientific revolution brings problems of the
ultiplication (how many scientific revolutions?) and periodisation (how often?). Some philosophers of science have
rgued for continuity, others have sought multiple revolutions: the Darwinian revolution, the Quantum revolution, the
NA revolution, and so on, while others claim that the real Scientific Revolution came in the 19th century when science
nd technology married. Recently, we are witnessing the so-called 4th Industrial Revolution, which conceptualises rapid
hange to technology, industries, and societal patterns due to increasing interconnectivity, smart automation and the
malgamation of artificial intelligence and automated machines. Yet, is it only a technological revolution, or can machines
iscover and explain new science? Are we facing the emergence of machine discovery of science?

.3. Knowledge discovery from data

.3.1. Discoverability and heuristic strategies
The questions of what and how phenomena and mechanisms can be discovered have been the subject of intense

esearch and philosophical discussion. In the philosophy of science, discoverability is the concept that scientific knowledge
ust be discoverable and verifiable [1,21–24]. This means that hypotheses or theories must be supported by evidence
nd based on empirical observations and data. Furthermore, scientific knowledge must be available for anyone to see and
erify, ensuring that it is not biased or limited to a specific group of people.
Recent advancements in the philosophy of science have seen a revival of interest in heuristic strategies to discover

nowledge; these strategies are seen as problem-solving activities, whereby a discovery is a solution to a problem.
euristics-based discovery methodologies are neither completely subjective and intuitive nor algorithmic or formalisable.
his view has shifted the scientific researcher from being viewed as a ‘puzzle solver’ to a ‘problem solver’ and ‘decision
aker’ in complex, variable, and changing environments [25]. In this paper, we will review mathematical models that
ddress equation discovery and causal discovery by generally formalising the problems as concrete statistical inference
asks; regression, conditional dependence or density estimation.

2 https://en.wikipedia.org/wiki/Timeline_of_scientific_discoveries.
4

https://en.wikipedia.org/wiki/Timeline_of_scientific_discoveries


G. Camps-Valls, A. Gerhardus, U. Ninad et al. Physics Reports 1044 (2023) 1–68

o
p
m
c
i
s
L
D
o
a
i
c

L

Table 1
Simple taxonomy of models and their level.
Source: Figure partly reproduced from [9].

Model/Level i.i.d. Distribution shifts Counterfactuals Physical insight Data-driven

3 - Mechanistic ✓ ✓ ✓ ✓ ✓

2 - Structural causal ✓ ✓ ✗ ? ?
1 - Statistical/ML ✓ ✗ ✗ ✗ ?

1.3.2. Modern approaches to data-driven discovery
Observational discovery relies on modelling. Yet, what types of models? Table 1, cf. [26], gives a simple categorisation

f models from mechanistic/physical models based on first principles and (rigid) equations and laws but with desirable
roperties of interpretability, invariance and robustness to distribution shifts, to purely statistical (machine learning)
odels that excel in prediction and are learned from data. In the middle, we have structural causal models, which
an answer counterfactual questions but do not necessarily capture physical knowledge. All three models are used
n quantitative data-driven science and map to different levels of discovery: learning statistical associations in data
treams, identifying causal relations between variables, and discovering equations from data. Note the resemblance to the
adder of Causation proposed by Pearl and Mackenzie [27] with three rugs: association, intervention, and counterfactual.
iscovering causal and physical laws from observations is a paradigm shift in AI and can impact the physical sciences and
ther disciplines. The fields of discovery of scientific knowledge and causal models of scientific phenomena are intertwined
nd tightly connected: our scientific endeavour is constantly challenged with causal questions, robust model building,
ntervention analysis, and hypothesis testing. The fields also share important theoretical challenges, where generalisability,
ompressibility, robustness, invariance, and extrapolation come into play.

evel 1 — Learning statistical associations. The most rudimentary approach to building association links from multivariate
time series data involves computing pairwise Pearson’s correlations or mutual information, which capture relationships
between variables at lag zero. Networks derived from these measures have found applications in numerous scientific and
engineering domains, including climate network analysis [28], financial market network analysis [29], and brain network
analysis [30,31]. However, mutual information-based associations at lag zero cannot be interpreted directionally since the
term ‘‘information’’ implies a lack of directionality. Other regions or variables may influence the nodes under investigation,
or the association could be due to a common driving process. Lagged association measures are commonly used to account
for directional links and quantify the time lag of associations.

Lagged correlation analysis has a long history in climate research [32] and neuroscience [33,34], with the delay at
the maximum of the cross-correlation function being used to interpret the delay of the underlying physical mechanism
coupling two processes. Other lagged measures of association, such as mutual information [35], have been proposed to
determine lags in nonlinear processes. In addition to analysing time lags, the magnitude of the cross-correlation is often
used as a measure of the impact of one process on another or as a measure of the strength of an association. This aligns
with the statistical interpretation of the square of correlation as the proportion of variance in one process that can be
linearly represented by another [36,37].

However, relying solely on association measures, even those that account for lags and nonlinearity, cannot uncover
directionality, detect the delay of the underlying mechanism, or provide a physically or causally interpretable estimate.
The widespread use and abuse of association measures in engineering and science throughout the 20th century have
impeded the exploration and development of meaningful causation measures and hindered the discovery of new and
alternative explanatory laws from data.

Level 2 — Learning causal relations from observations. A fundamental objective in the scientific enterprise is understanding
the causes behind the phenomena we observe [8,9]. This is particularly challenging in disciplines dealing with complex
dynamical systems, where experimental interventions are expensive, unethical, or practically impossible. In some fields
(e.g., climate sciences, economics, cardiology, and neurosciences), the current alternative is to rely on computationally
expensive simulation experiments. Still, those do not adequately represent all relevant physical processes involved. At
the same time, a rapidly increasing amount of time series data is generated by observations and also models. How can
we use this wealth of data to gain new insights into our fundamental understanding of these systems?

In recent years, rapid progress has been made in computer science, physics, statistics, philosophy, and applied fields to
infer and quantify potential causal dependencies from data without intervening in the systems. Although the truism that
correlation does not imply causation holds, the key idea shared by several approaches follows Reichenbach’s common
cause principle [38]: if variables are dependent, then they are either causal to each other (in either direction) or driven
by a common driver. To estimate causal relationships among variables, different methods take different, partially strong,
5
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ssumptions. Granger [35] addressed this question quantitatively using prediction. At the same time, in the last decades,
everal complementary concepts emerged, from nonlinear dynamics [39] based on attractor reconstruction to computer
cience exploiting statistical independence relations in the data [8,40]. More recently, statistics and machine learning
esearch utilised the framework of structural causal models (SCMs) [9] for this purpose. Causal inference from data is
ecoming a mature scientific approach [8].
Causal inference strives to discover the system’s causal structure and quantify causal effects by combining domain

nowledge, ML models, and data [9,27,41–43]. Causal inference can leverage observational or (interventional) model out-
ut data [41] to learn, understand and evaluate the plausibility of specific causal relations among the considered variables.
ausal inference is becoming a mature field of science. Today, many methods and tools are available to address challenges
n complex systems [39,44] and many other fields. Causality is pivotal not only for a better academic understanding
f processes in science but also for more robust forecasts, attributing the causes of events, and improving the physics
mbedded in physics models. Many fields of science and engineering are using causal inference/discovery methods, from
arth and climate sciences [10,45–51], neurosciences [52–54], social sciences [55,56], health and epidemiology [57–59],
r economics [60,61].

evel 3 — Equation discovery in physical systems. The scientific enterprise distinctly differs from other intellectual endeav-
urs by relying on formal theories, laws, and models to explain and predict observations and using such observations to
onstruct, revise, and evaluate its formal statements [22–24]. Many of these activities have been studied by philosophers
f science for over a century. The Logic of Science [1] (or justification) aims to characterise how observational data,
imulations, and experiments can collectively support or refute laws, models, or theories.
A common claim was that scientific discovery requires some ‘creative spark’, which cannot be analysed rationally

r logically [62]. Popper, Hempel, and many other philosophers of science maintained that the discovery process was
nherently irrational and beyond any formal understanding. The key insight came from Simon [1,62,63], who proposed
hat scientific discovery, rather than ‘‘depending on some unknown mystical ability, is a variety of problem-solving that
nvolves searching through a space of problem states generated by applying mental operators and guided by heuristics to
ake the search tractable.’’ Such observation established the first heuristic programming methods of hypothesis (model)
earch to automate the creative process and law discovery. Discovering numeric laws from data has been approached by
any authors in the past using grammars, logic rules, propositional bases, entailment, and genetic algorithms, to name a

ew [22,64–75]. Later, [76] proposed an automated algorithm to discover Hamiltonians, Lagrangians, and other geometric
nd momentum conservation laws without prior knowledge of physics, kinematics, or geometry. A new field was born;
earning explicit mathematical laws from observations, which was often referred to as equation discovery or data-driven
ystem identification [77].

Inspired by earlier work on the DENDRAL system [78], which inferred structural models of organic molecules from their
ass spectra, the community developed different systems that created models of other scientific phenomena (e.g., [79]).
he field was named computational scientific discovery, and the challenge of automating it has been approached by many
esearchers since then [80–85]. Efforts in this paradigm differ from mainstream work in machine learning by producing
cientific formalisms [23,86,87], ranging from componential models in particle physics [88] to reaction pathways in
hemistry and to regulatory models in genetics [89]. Reviews have been edited by Shrager and Langley [90], Dzeroski
nd Todorovski [91] and Simidjievski et al. [77].
Recently, the field has been approached by scientists in AI, functional analysis and mathematical operators, nonlinear

ontrol, and system identification. Modern approaches that we will review in this paper consider: Automated reverse
ngineering of nonlinear dynamical systems [82], sparse-promoting solutions that identify parsimonious models of
onlinear dynamics; e.g. relevance vector machine, a sparse Bayesian regression method [92] or the SINDy method [12,93],
hich has been combined with deep neural networks [94], reduced-order models [95] and Koopman operators based
n kernel theory and autoencoders [96–100], differentiable networks that can learn the true underlying equation and
xtrapolate to unseen domains [101], a constrained symbolic regression methodology, named AI Feynman, that enforces
esirable constraints in equation learning (compositionality, units, separability, symmetry, smoothness) [102], genetic
rogramming to distil laws of physics [103], or a transformer-based architecture using massive pretraining can predict
ormulas from data [104].

A relevant challenge in this context is the discovery of state variables from experimental/observational data. Almost
n all equation and causal discovery algorithms, the variables are given or assumed, which is impossible when trying to
nderstand new or highly complex systems. Some approaches exist in the literature based on the combination of learning
ompact and expressive feature representations, manifold learning for the determination of the intrinsic dimensionality
f the system representation coordinates, and SINDy as a regulariser that enforces dynamic equations in the state
pace [13,93,105,106]. These approaches are somewhat related to the discovery of causal relations under noise and latent
unctions, which is also an active field of research [107–109].

.3.3. AI for scientific discovery
The debate about AI-based theories of scientific discovery has been ongoing for decades, beginning with whether
omputers can devise new concepts or merely process the concepts already included in a given computer language.

6
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owever, the discussion has been revived with the development of new computational tools for data analysis. It is now
argely uncontroversial that machine learning tools can aid discovery, though there is still debate about whether they
enerate new knowledge or merely speed up data processing. Moreover, there is the question of whether data-intensive
cience fundamentally differs from traditional research and the ethical implications of ‘‘superhuman AI’’. Philosophers
ave also focused on the opacity of machine learning, asking whether we can say that humans and machines are ‘‘co-
evelopers’’ of knowledge. Ultimately, the debate about AI-based theories of scientific discovery is still ongoing, with
esearchers considering both the potential benefits and ethical implications of such tools.

‘‘With the advent of data-driven
methods that learn patterns and
relations from data, the tedious
human endeavour of scientific
discovery (laws, equations and
causes of phenomena) is being
revolutionised... and accelerated
in many fields.’’

The fields of equation discovery and causal inference that we will review in this
paper promise to shed light on the previous fundamental questions: what can an
algorithm learn and discover, what can AI explain, and what new science may emerge
through a collaborative AI-machine dialogue about science? An integrative approach
seems necessary, where domain experts, data and machine work together in a
data-driven framework that formulates and answer causal questions and discover
new laws [8]. At a more general level, it becomes pertinent to ask if machines
can start a new scientific revolution and even if AI itself is the ultimate scientific
revolution [110–112].

1.4. Outline

This paper aims to review the most important concepts, methods, and previous works on causal inference and discovery
in the physical sciences. We use statistical learning techniques to discover causal relations, physical laws, and governing
equations from data. Sections 2 and 3 present general frameworks and taxonomies for causal discovery and learning
physical laws from data, respectively. Both sections categorise the field, reviewing concepts and methods, their specific
characteristics, challenges, and opportunities in the physical sciences. Section 4 provides examples of causal discovery
and equation discovery in a wide range of fields of the physical sciences: dynamical systems, neuroscience, classical and
quantum systems, fluid mechanics, geosciences and climate sciences. We pay attention to how causality concepts and
methods can improve our knowledge of a given physical system from observations. Section 5 outlines the most promising
future lines of research in this area of study at the intersection of machine learning and nonlinear physical processes.

2. Causal discovery in the physical sciences

Causal discovery, see for example [9,43] for extended expositions of the topic, has become increasingly popular in
the last years as a tool to discover the underlying causal structure of physical systems [10]. There is an abundance and
ever-growing number of methods designed to work under different assumptions and tackle other use cases. This section
reviews several methods for causal discovery, focusing on methods for time series and their potential use in physical
sciences. To this end, in Section 2.1, we first provide a taxonomy for many available causal discovery methods. Section 2.2
discusses causal discovery’s challenges in real-world applications. We conclude in Section 2.3 by discussing opportunities
for applications of causal discovery in the physical sciences. We would also like to point to other reviews focusing on
causal discovery of time series [10,113,114]. In addition, Runge et al. [115] provides a shorter accessible summary of
methods for causal discovery and causal effect estimation with practical case studies to illustrate typical challenges, such
as contemporaneous causation, hidden confounding and non-stationarity.

2.1. A taxonomy of causal discovery methods

In this section, we structure the zoo of existing causal discovery methods to guide method users in finding a method
suitable for their application and guide method developers in identifying open challenges. To this end, we summarise the
central formal aspects of the graphical-model-based causal inference framework in Section 2.1.1. Then, in Section 2.1.2,
we discuss several characteristics (hereafter referred to as ‘‘axes’’) by which methods can be conceptually distinguished.
Lastly, in Section 2.1.3, we present an extensive (but not exhaustive) list of causal discovery methods and characterise
these methods according to previously introduced axes.

2.1.1. Preliminaries
At the heart of the graphical-model-based causal inference framework are structural causal models (SCMs), e.g. [3,9,116].

An SCM serves as a causal model for the data-generating process and specifies how the system reacts to interventions,
that is, to idealised experimental manipulations that deliberately hold fixed a subset of the system’s variables while not
perturbing the system in any other way.

An SCM for a system described by the set of variables V = {V 1, . . . , V n
} consists of n so-called structural assignments

V i
:= f i(pai, ϵ i) with 1 ≤ i ≤ n , (1)

together with a product distribution pϵ(ϵ1, . . . , ϵn) = p1ϵ (ϵ1) · . . . · p
n
ϵ (ϵn) of the random variables ϵ i. Formally, the f i

i i
are measurable functions that depend non-trivially on all of their input arguments, and the pa ⊆ V \ {V } are subsets
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Fig. 2. Illustration of some axes along which causal discovery methods are categorised in this review; see references in the main text to the respective
subparts of the figure.

of the system variables V 1, . . . , V n. The functions f i are interpreted as the causal mechanisms by which the values of
he respective variable V i are determined from the value of ϵ i and the values of the variables in pai. Consequently, the
ariables in pai are referred to as the causal parents of V i. The random variables ϵ i are interpreted as noise that summarises
ll factors that are not modelled explicitly, and the factorisation of pϵ(ϵ1, . . . , ϵn) amounts to the assumption that the
1, . . . , ϵn are jointly independent. This joint independence is motivated by the view that any dependence between the
oise variables must be due to a causal relationship between them and that such a dependence should then rather be
odelled explicitly by enlarging the set V of system variables.
The causal graph of an SCM with system variables V 1, . . . , V n is the directed graph whose vertices are the variables

i and with a directed edge V i
→ V j if and only if V i is a causal parent of V j, that is, if and only if V i

∈ pai. Consequently,
he causal graph of an SCM shows the qualitative cause-and-effect relationships as specified by the sets pai. If the causal
raph is acyclic, that is, if the causal graph is a directed acyclic graph (DAG), then the SCM is said to be acyclic.
An SCM obtains causal meaning by asserting how the modelled system reacts to interventions. Formally, an interven-

ion on the variable V k
∈ V is a mapping, conventionally denoted as do(V k

:= vk), that maps the original SCM and a
umber vk to a new SCM in which the original structural assignment for V k is replaced by the new structural assignment
k
:= vk and the noise variables ϵk is removed. This new SCM is referred to as an intervened SCM, and do(V k

:= vk)
s interpreted as an idealised experimental manipulation by which the value of V k is held fixed at vk while leaving the
ystem unaltered else. This specification of how the system reacts to interventions is why using the symbol ‘‘:=’’ instead
f ‘‘=’’ in (1) is conventional. On the level of causal graphs, do(V k

:= vk) amounts to removing all edges that point into V k

because, in the intervened SCM, the variable V k has no causal parents. Interventions on subsets of variables are defined
similarly.

In an acyclic SCM, the combination of noise distribution pϵ and functions f i uniquely determines a distribution of
the system variables V 1, . . . , V n. This distribution is often referred to as the entailed distribution of the SCM. The entailed
distribution p(·) of the original SCM (that is, of the SCM that models that system without interventions) is often referred to
as the observational distribution. The entailed distributions of the intervened SCMs are often referred to as interventional
distributions and are conventionally often denoted as p(·| do(V k

:= vk)); and similarly for interventions on subsets of
system variables.

When using this notation, it is important to keep in mind that p(·| do(V k
:= vk)) is, in general, not equal to p(·| V k

= vk).
Indeed, p(·| do(V k

:= vk)) is the distribution of the intervened SCM, whereas p(·| V k
= vk) corresponds to observing

V k
= vk; put differently: Correlation is not equal to causation.
The article [117] discusses in much detail the more complicated case of cyclic SCMs. As shown there, cyclic SCMs need

not entail a unique distribution for the system variables. However, [117] defines a restricted class of cyclic SCMs, termed
simple SCMs, that entail a unique distribution and that are closed under interventions. Moreover, acyclic SCMs are a special
case of simple SCMs.

In the time series case, which we are predominantly interested in this paper, (1) can be generalised by putting a time
index t on V i, f i, pai and ϵ i. The commonly used term causal stationary then refers to time-invariance of the qualitative
cause-and-effect relationships, that is, to the situation that pait+∆t = {V

j
s+∆t | V

j
s ∈ pait} for all t and ∆t .

2.1.2. Axes for categorising causal discovery methods
This section introduces and explains several axes for categorising and distinguishing causal discovery methods. While

it would be possible to consider more axes yet, the authors believe that the choice of axes presented here is a reasonable
compromise between a sufficiently fine-grained categorisation on the one hand and clarity of exposition on the other
hand. Table 2 lists many causal discovery methods and categorises them according to the aforementioned axes. In Fig. 2,
we graphically illustrate some of the axes.
8
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Table 2
Taxonomy of methods for causal discovery. The entries in parentheses (·) indicate that there are versions of the algorithm in which the assumption
s relaxed. Methods in grey rows are described in more detail in the text. We use the abbreviations ‘TSG’ for time series graph, ‘summary’ for
ummary graph and ‘ext. sum. graph’ for an extended summary graph.
Method Target of inference Approach Process assumptions Data

assumption

Bi-/Multi-
variate

Graph type Indep./
Asymm./
Score

Non-/linear Stoch./Det. Con- temp. Cycles Hidden var.

GC [35] Bi. Summary indep. Linear stoch. ✗ Lagged-only ✗

Multi-GC [118] Multi. Summary indep. Linear stoch. ✗ Lagged-only ✗

Multi-nonlin-GC [119] Multi. Summary indep. nonlin. stoch. ✗ Lagged-only ✗

TE [120] Bi. Summary indep. nonlin. stoch. ✗ Lagged-only ✗

Multi-TE [121] Multi. Summary indep. nonlin. stoch. ✗ Lagged-only ✗

CCM [39] Bi. Summary indep. nonlin. det. ✓ ? Partially
Ext.-CCM [122] Bi. Summary indep. nonlin. det. ✓ ? Partially
tsPC [123] Multi. TSG indep. Both stoch. ✓ (✓) ✗

PCMCI [124] Multi. TSG indep. Both stoch. ✗ Lagged-only ✗

PCMCI+ [123] Multi. TSG indep. Both stoch. ✓ (✓) ✗

PCGCE [125] Multi. ext. sum. graph indep. Both stoch. ✓ (✓) ✗

FCIGCE [125] Multi. ext. sum. graph indep. Both stoch. ✓ (✓) ✓

tsFCI Multi. TSG indep. Both stoch. (✓) (✓) ✓

SVAR-FCI [125] Multi. TSG indep. Both stoch. ✓ (✓) ✓

SVAR-GFCI [126] Multi. TSG Score &
indep.

Both stoch. ✓ (✓) ✓

LPCMCI [127] Multi. TSG indep. Both stoch. ✓ (✓) ✓

(F)GES [128–131] Multi. Summary Score Linear stoch. ✓ Lagged-only ✗

DYNOTEARS [132] Multi TSG Score Linear stoch. ✓ Lagged-only ✗

IDYNO [133] Multi TSG Score Linear and
non-linear

stoch. ✓ Lagged-only ✗

NTS-NOTEARS [134] Multi TSG Score Linear and
non-linear

stoch. ✓ Lagged-only ✗

TiMiNo [135] Multi. TSG indep. Both stoch. ✓ Lagged-only ✗

RHINO [136] Multi. TSG indep. Both stoch. ✓ Lagged-only ✗

VARLiNGAM [137] Multi. TSG asymm. Linear stoch. ✓ Lagged-only ✗

Bivariate vs. multivariate causal discovery. This axis concerns the number of variables that are being considered. Bivariate
causal discovery aims to discover the causal relationship between exactly two variables X and Y (in the non-temporal
case) or between exactly two component time series X i and X j (in the time series case). Multivariate causal discovery aims
to discover the causal relationships between any number of variables or component time series, respectively. Bivariate
causal discovery often (but not necessarily) assumes causal sufficiency (see axis on causal sufficiency below). In the time
series case, bivariate causal discovery often (but not necessarily) targets to infer the summary graph rather than the time
series graph or extended summary graph (see axis on time series graph discovery below). If time lags are at least partially
resolved in the bivariate time series case, that is, if the target of inference is the time series graph or the extended summary
graph, then one effectively deals with a multivariate causal discovery problem.

Time series graph discovery vs. summary graph discovery vs. extended summary graph discovery. This axis is specific to the
temporal setting and concerns the target of inference. Some methods are designed to learn the time series graph [138],
also known as full-time graph [135] and time series chain graph [139], that is, the collection of all causal links X i

t−τ → X j
t

including the respective lags τ of these links. Part (a)(i) of Fig. 2 shows an example of a time series graph with four
component time series. As indicated by the grey edges, the pattern of edges in this graph is implicitly assumed to repeat
both to the left (past) and right (future). Due to this repetitive structure of the edges, a time series graph is uniquely
specified by the collection of edges that point into a vertex at an arbitrary reference time step t . Other methods disregard
the information about the time lags and instead learn the summary graph [9]. In the summary graph, there is exactly
one vertex per component time series X i and an edge X i

→ X j if and only if there is an edge in the time series graph
X i
t−τ → X j

t at any lag τ . Part (a)(iii) of Fig. 2 shows the summary graph associated with the time series graph in part
(a)(i) of the same figure. Another option is to learn extended summary graphs [125]. These graphs go midway between
learning time series and summary graphs by distinguishing between contemporaneous and lagged links but disregarding
the information about the specific time lags of lagged links. Specifically, the extended summary graph contains exactly
two vertices per component time series X i, namely the vertex X i

t for the present time steps and the vertex X i,− for all
past time steps. There is an edge X i

t → X j
t if and only if, this same edge is also in the time series graph, there is an edge

X i,−
→ X j

t if only if there is at least one τ ≥ 1 such that X i
t−τ → X j

t is in the time series graph, and there is no edge
between X i,− and X j,−. Part (a)(ii) of Fig. 2 shows the extended summary graph associated with the time series graph in

part (a)(i) of the same figure. Resolving the lag structure does yield more information but also implies a more complex

9
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arget of inference. Learning more complex graphs (e.g., a time series graph vs. a summary graph) is conceptually and
tatistically more challenging.
Methods for time series causal discovery typically require the user to specify a maximal lag τmax up to which the

ethod is supposed to be sensitive. If the target of inference is the time series graph, then this choice is apparent as
he learned graph has exactly τmax + 1 steps. As opposed to that, when learning summary graphs or extended summary
raphs the choice of τmax is not apparent from the learned graph.

‘‘The wide variety of
causal discovery methods
can be structured into
independence-based,
asymmetry-based, score-
based, and context-based
approaches.’’

Methods based on independence, asymmetry, scores and context. This axis distinguishes
causal discovery methods by the type of information/signal that they use to learn the
causal graphs from data. In this review, as is common in the literature (for example,
see [140]), we distinguish the independence-based, asymmetry-based, and score-based
approaches. Further, we consider the context-based approach to distinguish those meth-
ods that employ the invariance of causal mechanisms across different environments. An
exact delineation between these four approaches is not always possible as there are
hybrid methods that combine more than one approach.

First, independence-based causal discovery, sometimes called constraint-based causal discovery, utilises marginal and
conditional independencies between variables to learn the causal graph or a set of causal graphs consistent with those
independencies. Recall that an SCM is defined by a collection of structural assignments for each variable, where each
assignment is a function of the variable’s parents and a noise term. The collection of noise variables is assumed to be jointly
independent. Independence-based causal discovery relies on the fact that, for data generated by an SCM, the structure of
the SCM’s causal graph imprints some independencies onto the data [3,141,142]. This property is known as causal Markov
condition [43]. Alternatively, if one does not assume that an SCM generates the data, then the causal Markov condition
is not automatically implied but needs to be assumed separately, leading to the so-called causal Markov assumption. The
-separation criterion [143] allows to graphically determine all independencies that are necessarily implied in a given
ausal graph [3,142,144]. The basic idea then is to run statistical tests of marginal and conditional independencies on the
ata and, second, use the results of these tests to constrain the causal graph’s structure.
For the second of these two steps to hold, one further needs to make the causal faithfulness assumption [43]. This

ssumption says there are no independencies beyond those necessarily implied by the causal Markov condition in the
bserved data.
Independence-based causal discovery is non-parametric in that no assumption on the SCM’s functional relationships

nd/or noise distributions needs to be made. However, choosing a particular method for (conditional) independence
esting may implicitly impose a parametric assumption. For example, testing for (conditional) independence by (partial)
orrelation implicitly makes the assumption that the data-generating process is linear Gaussian. Conversely, if a parametric
ssumption can be made, this assumption might favour specific methods for (conditional) independence testing. For
xample, suppose one can assume linear Gaussian data. In that case, it is reasonable to use a (partial) correlation instead
f more general (conditional) independence tests like, for example, a test based on (conditional) mutual information as
iven in [145].
Typically, there are multiple graphs that by means of the causal Markov condition, imply the exact same set of

conditional) independencies. For example, the three graphs X → Y → Z and X ← Y ← Z and X ← Y → Z by
eans of the causal Markov condition all imply exactly the same independence, namely that X and Z are conditionally

ndependent given Y (and no further independencies). Such graphs are said to be Markov equivalent to each other and
onstitute a Markov equivalence class. Consequently, independence-based causal discovery algorithms cannot distinguish
etween Markov equivalent graphs.
Second, asymmetry-based causal discovery makes and relies on parametric assumptions on the form of the functional

elationships and/or noise distributions of the data-generating SCM [9].
This approach is motivated by the elementary bivariate case, that is, by finding the causal relationship between two

ariables X and Y . As explained above, with independence-based causal discovery, it is not possible to distinguish the
arkov equivalent graphs X → Y and X ← Y . This impossibility is not a shortcoming of independence-based causal
iscovery but rather is fundamental unless stronger assumptions are made [9,146]. The proof of the impossibility of
istinguishing between X → Y and X ← Y works by showing that if the true data-generating SCM goes in the direction
→ Y , then one can always construct an alternative SCM in the direction X ← Y that gives rise to the same data

istribution as the true SCM.
The basic idea for removing this fundamental ambiguity is as follows: For certain choices of restricted SCMs, defined by

certain restricted parametric assumptions, it is impossible to have a restricted SCM in both directions. Hence, given the
assumption that the true SCM lies in the restricted class of models, it becomes possible to distinguish the causal and anti-
causal direction. A restricted class of SCMs with this property is said to be identifiable. This approach to causal discovery

elies on the expectation that the SCM in the causal direction generically has lower complexity than any alternative SCM

10



G. Camps-Valls, A. Gerhardus, U. Ninad et al. Physics Reports 1044 (2023) 1–68

i
i
t

f
a
s
g
s
t
y
e
o

c
l
a
h
e
c
m
p
d

L
s

n the anti-causal direction. As explained in Section 4.1.2 of [9], this expectation can be motivated by the principle of
ndependence of cause and mechanism [146,147] There are also asymmetry-based causal discovery methods for learning
he causal graph between two or more variables for multivariate causal discovery [9].

Third, score-based causal discovery chooses one or multiple best-scoring graphs with respect to a predefined scoring
unction. This scoring function is typically built on the likelihood of the observed data given a particular graph and an
ssumed parametric statistical model [9]. This approach requires searching over the space of causal graphs. Even if causal
ufficiency (see axis on causal sufficiency) and acyclicity (see axis on cycles below) are assumed, in which case the causal
raph is a directed causal graph (DAG), the search space of graphs already grows super-exponentially, e.g. [129]. An exact
earch is thus infeasible even for a moderate number of variables. Instead, greedy search techniques are often used, e.g. in
he famous GES algorithm [129,130] (see below for details on this algorithm) If the assumed statistical model does not
ield identifiability beyond the Markov equivalence class, then the scoring function must be chosen such that Markov
quivalent graphs have the same score. Hence, one can search over the space of Markov equivalence classes rather than
ver the space of graphs.
Fourth, context-based causal discovery requires access to data of the same system in different contexts. The term different

ontext is understood rather broadly: Its meaning ranges from, for example, observing the same physical system at other
ocations to, for example, observing a system both before and after an intervention. The basic assumption and idea of this
pproach to causal discovery are that the causal mechanisms, that is, the functional mappings from causes to effects and
ence also the conditional distributions of the effects given their causes, remain unchanged across all contexts (unless the
ffect variable is the target of an intervention in one of the contexts). In contrast, marginal distributions and hence also the
onditional distributions of causes given their effects can change [9]. A prime example of a context-based causal discovery
ethod is Invariant Causal Prediction [148] (see below for more details). The joint causal inference (JCI) framework [149]
roposes to model all contexts with one graph by including one or multiple so-called context variables whose values
etermine the context and subsequently pooling the data from the different contexts into one joint dataset.

inear or nonlinear dependencies. This axis concerns the form of the functional relationships in the data-generating
tructural causal model. Broadly, see part (b) of Fig. 2, one can distinguish between linear and nonlinear functional
relationships. In independence-based and score-based causal discovery, an assumption of linearity can enter implicitly
by using partial correlation for testing conditional independence (independence-based approach) or by choice of the
statistical model (score-based approach). In asymmetry-based causal discovery, an assumption of linearity is, if made,
typically explicit by choice of the functional model. Various asymmetry-based causal discovery methods do not assume
linearity but still use restricted functional model classes that do not allow for entirely generic dependencies, for example,
the functional model class of nonlinear additive noise models [150]. However, for simplicity, we here only distinguish the
methods by whether or not they assume linearity.

Deterministic vs. stochastic systems. This axis concerns an assumption on the type of data-generating process Some
methods assume the data are generated by a deterministic process, for example, a deterministic dynamical system. In
contrast, other methods make explicit use of the assumption that the data-generating process is inherently stochastic,
see part (c) of Fig. 2. In the case of stochastic data-generating processes, the stochasticity is interpreted as dynamical
noise that arises due to factors outside of the model. Dynamical noise needs to be distinguished from measurement
noise: The former is an inherent property of the data-generating process, and the latter arises from uncertainty in the
data-collection process The causal inference and discovery frameworks have also been extended to dynamical systems,
both deterministic and stochastic, without stable equilibrium distribution [151–153].

Contemporaneous links. This axis is specific to the temporal setting and concerns a connectivity assumption on the causal
time series graph. Some methods make the assumption that all causal links in the time series graph are lagged, meaning
that all causal links are of the form X i

t−τ → X j
t with τ > 0, whereas contemporaneous links, that is, links of the form

X i
t → X j

t are assumed to be absent. Other methods do not make this assumption. For example, in the time series graph in
part (a)(i) of Fig. 2, there are the contemporaneous edges Zt → Wt and Yt → Xt . Consequently, methods that assume the
absence of contemporaneous links would, by assumption, disallow this particular time series graph. Contemporaneous
causal links correspond to causal influences that act on a time scale shorter than the measurement interval; for example,
a causal influence on a time scale of six hours in daily measured data.

Causal cycles. This axis concerns a connectivity assumption on the causal graph Many methods assume the absence of
cyclic causal relationships. This assumption means that a variable X j

t cannot be a causal ancestor of another variable X i
t−τ

if that second variable X i
t−τ is a causal ancestor of the first variable X j

t . For example, the lower graph in part (d) of Fig. 2
has the causal cycle Xt → Yt → Xt . Because causation cannot go backwards in time, the assumption of acyclicity only

restricts the contemporaneous section of the causal time series graph. The assumption is thus only relevant for τ = 0.

11



G. Camps-Valls, A. Gerhardus, U. Ninad et al. Physics Reports 1044 (2023) 1–68

g
w
c

Fig. 3. Figure illustrating a time series graph (TSG) and the respective graphs discovered by applying various causal discovery methods to data
enerated from an SCM with that time series graph. (a) Time series graph. (b) The discovered undirected graph by considering (lagged) correlations,
here spurious correlations are highlighted as dashed grey lines. (c) The directed graph discovered by multivariate Granger causality does not
onsider contemporaneous links and retains a spurious link from Y to W . (d) Graph discovered by CCM. (e) The graph discovered by applying the
plain PC and (F)GES algorithms fail to show lagged links and, in addition, fail to orient a link that the time series adapted algorithms can orient.
(f) The time series version of PC (tsPC), PCMCI+, and the time series version of GES (tsGES) discover both lagged and contemporaneous links and
orient edges up to the Markov equivalence class. (g) Plain FCI has the same drawbacks as plain PC or (F)GES. (h) FCI-based time series causal
discovery algorithms account for latent confounders and thus discover causal arrows up to latent confounding. In particular, the algorithm cannot
exclude that the association between Yt−1 and Zt is due to latent confounding rather than a causal relationship. (i) The PCGCE algorithm discovers
the extended summary graph up to its Markov equivalence class. (j) Var-LiNGAM discovers all causal relationships correctly if the assumptions of
linear relationships and additive non-Gaussian noise are satisfied.

In particular, even with the assumption of acyclicity, it is possible to model temporal feedbacks. For example, although
the upper graph in part (d) of Fig. 2 is acyclic, it displays a causal influence of time series X on Y (by the edge Xt → Yt )
and a causal influence of time series Y on X (by the edge Yt−1 → Xt ). There are also causal discovery methods that allow
cyclic causal relationships, e.g. [117,154–156]. These methods typically infer less informative graphs than those inferred
by methods that do not allow causal cycles. The early work [11] considers the special case of causal discovery in linear
cyclic systems.

Causal sufficiency. This axis concerns an assumption that can be viewed as an assumption on the data-generating process
or the data-collection process. The assumption of causal sufficiency [43] says that there are no latent confounders, also called
unobserved confounders or hidden common causes. A latent confounder is an unobserved variable that (potentially indirectly
through other unobserved variables) causally influences two observed variables X i

t−τ and X j
t . For example, in the lower

graph in part (e) of Fig. 2 the unobserved variable Z acts as a latent confounder of the variables X and Y . Consequently,
this graph violates causal sufficiency whereas the upper graph in part (e) of Fig. 2 satisfies causal sufficiency. Methods
that do not assume causal sufficiency typically infer graphs that are less informative than the graphs inferred by methods
that do assume causal sufficiency. For example, consider the elementary non-temporal bivariate case with two variables
X and Y . If these variables are dependent and causal sufficiency is assumed, then either X causes Y (X → Y ), or Y causes
X (X ← Y ). If causal sufficiency is not assumed, then there is the third possibility that neither X causes Y nor vice versa
but that there rather is an unobserved variable L which causes both X and Y (X ← L→ Y ).

2.1.3. Description and categorisation of causal discovery methods
Here, we list and briefly explain several existing causal discovery methods for time series data. We summarise this

list and the placement of each method with respect to the axes presented above in Table 2. In Fig. 3, we illustrate and
compare an example time series graph and the respective graphical objects obtained by some of the discussed causal
discovery algorithms when applied to data generated from an SCM with that time series graph.

Granger causality. Granger Causality (GC) [35,157] is originally a statistical test to decide whether a time series Xt is a
cause of another time series Y , in the sense that past values of X have significant predictive power in forecasting Y .
t t t
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C is thus, in principle, a simple test of temporal (or lagged) relationship and predictability. Nevertheless, under causal
ufficiency and no contemporaneous effects assumptions, it can be formally shown that GC testing detects actual causal
inks (see e.g. Peters et al. [9] for a formal derivation of these results in the SEM setting).

In a multivariate setting, which is seldom the case, testing if Xt causes Yt requires controlling for all possible
confounders. Therefore the conditional GC [118,157–159], includes in the restricted and full models the past of all other
relevant time series in the system that are not Xt and Yt . Classically, GC considers linear models for which standard
t-tests or F-tests can be employed, but non-linear extensions have been considered both in econometrics [160–164] and
in physical and biological applications [119,165,166].

Linear and nonlinear Granger causality in dynamic systems. A unified view of (nonlinear) GC with kernel methods for the
physical sciences was introduced in [119]. Two examples are given here:

1. Bivariate system with coupled non-linear and autoregressive relations given by xt+1 = 3.4xt (1 − x2t ) exp(−x2t ) + ε
x
t and

yt+1 = 3.4yt (1 − y2t ) exp(−y2t ) + 0.5xtyt2 + ε
y
t , where ε is white Gaussian noise with zero mean and variance 0.4. The

causal direction is X → Y . The histogram of the estimated causal index δ on the left figure reveals GC’s insensitivity to
the causal direction, the high false positive rate of KGC [167], and a higher detection power by the XKGC [119].

2. Two logistic maps system defined as xt+1 = 1−1.8x2t and yt+1 = (1−α)(1−1.8y2t )+α(1−1.8x2t ), where α ∈ [0, 1] controls
the coupling strength. The causal relationship implemented is X → Y , and the challenge is to assess the detection power
of methods without introducing any external variable. The left figure shows XKGC [119] improves detection power over
GC/KGC for any α.

Transfer entropy [120] between Yt and Xt measures the amount of unique information contained in the past of Xt
about the state of Yt and is defined as TX→Y |Z = H(Yt |Y−, Z−)− H(Yt |Y−, X−, Z−). Transfer entropy can be considered
s the generalisation of GC by extending the implicit conditional independence test to arbitrary orders of dependence.
ndeed, Barnett et al. [121] proved that (linear) GC and transfer entropy causality are equivalent under the assumptions
f VAR model class and Gaussian error distributions.

CM.

Fig. 4: Summary graph for Lorenz attractor system.

Convergent cross-mapping (CCM) [39] is based on the simple observation
that if data from a deterministic dynamical system is generated by a system
of ordinary differential equations (ODEs), then the explicit form of these
equations directly defines the causes of each variable in the system: x is a
ause of y if the dynamics (any of the derivatives of y) is expressed in terms
f the state of x. For example, in the Lorenz attractor system

x′ = σy− σx
y′ = −xz + ρx− y

z ′ = xy− βz (2)

xt is caused by yt , yt is caused by xt and zt and zt by xt and yt as summarised
by the summary directed graph of Fig. 4. Learning the generating ODE from time series data would allow us to recover
the causal relations and summary-directed graph. Nevertheless, relying on Takens’ theorem [168], Sugihara et al. [39]
concluded that it is not necessary to recover the exact ODE to recover its causal properties: if one has a cause and effect
variable within an ODE system, then a qualitative description of the dynamics of the cause based on the dynamics of
the effect can be recovered. Surprisingly, while one would need a large number of lags to estimate an ODE where no
parametric assumptions have been made, Takens’ theorem states that a good enough estimate, i.e. one that retains the
causal properties of the ODE, can be made with at most 2d+ 1 lags where d is the number of variables in the ODE.
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The CCM pseudo-algorithm for checking if two variables X and Y are causally related:
1. Choose embedding dimension E: number of lags to use with 1 ≤ E ≤ 2d+ 1.
2. Estimate cross-map skill ρ(l) for a sequence of several observations l1, . . . , lN with lN ≤ L, L is the maximum number of

available observations in the time series. For each li:

(a) Construct shadow manifold Mx: in practice represented by matrix Y ∈ Rl×E with time series yt , yt−1, yt−2, yt−E+1
(b) Assume the shadow manifold satisfies Takens’ theorem condition and retains the metric properties of manifold M .

Thus estimate euclidean distance di of E+1 nearest points on manifold Mx to point (xt , xt−1, . . . , xt−E+1). Denote
the time indices corresponding to these points as t1, t2, . . . , tE+1.

(c) Construct estimate of yt using simplex projection in shadow manifold: weighted average of E + 1 nearest points
(on Mx) with weights determined according to the exponentially weighted distance on Mx of each point (calculated
in the previous step):

ŷt =
E+1∑
i=1

wiyti where wi =
exp(− di

d1
)∑

i exp(−
di
d1
)

(3)

(d) Construct cross-map skill ρ(l) = Corr(yt , ŷt |Mx)

3. Check if cross-map skill ρ(l) converges as l tends to L. As the number of observations used increases, the manifold
estimation should be denser, so cross-map skill should improve and converge, provided our assumption that Mx retains
the metric properties of M is true.

The algorithm should also be applied symmetrically to establish the convergence of the cross-map skill x̂t |My. If both
cross-map skills converge, we can establish that both variables belong in the same ODE system, and the causal relations
are bi-directional. Note that in step 2c, we only use the shadow manifold Mx to determine which points and with which
weights should be used to estimate yt . If the convergence of the cross-map skill happens in only one direction, the proper
conclusion is that a uni-directional causal relationship exists between the two variables. If the cross-map skill of ŷt |Mx
converges, the proper conclusion is that y causes x. This is somewhat counterintuitive, at least from the point of view of
more classical causal discovery methods, because to establish that x is an effect of the cause y, we must be able to predict
the cause y using the effect x, where for all other methods discussed in this work it is the other way around.

PC-based methods. In the following, we start with an exposition of the PC algorithm [43]. We then explain both a naive
(tsPC) and more sophisticated (PCMCI) time series adaption.

1. PC. The original PC algorithm (named after Peter and Clark’s authorship [43]) was constructed for i.i.d random
variables and thus, in particular, for non-time series data. Below, we will also describe an extension to the time
series case. The PC algorithm assumes that the underlying causal graph is a (directed acyclic graph DAG). A DAG
has only directed edges (→ and ←) and no cycles. As for independence-based algorithms in general, the PC
algorithm assumes the causal Markov condition and causal faithfulness to infer d-separations on the causal graph
from conditional independencies alone. Moreover, the algorithm assumes causal sufficiency. Consequently, the
algorithm cannot distinguish between two graphs with the same set of d-separations. The graphical representation
of an equivalence class of DAGs with the same d-separations is known as a (completed partially-directed acyclic
graph CPDAG), which is the object of discovery of PC (see [169]). As compared to DAGS, CPDAGs can contain
undirected edges (◦−◦). These undirected edges signify that both orientations (→ or←) are compatible with the
set of conditional independencies.

The PC algorithm starts from a fully connected undirected graph and consists of three phases:
(a) The skeleton phase uses statistical (conditional) independence tests to infer the adjacencies of the underlying causal

graph. If two variables X and Y are found to be independent conditional on a (possibly empty) set of variables Z,
then the edge between X and Y is removed.

(b) The collider orientation phase then orients all collider motifs, that is, motifs of the form X → Y ← Z where X
and Z are non-adjacent. These orientations can be inferred because collider motifs impose a particular pattern of
(conditional) (in-)dependencies.

(c) The orientation phase finally uses graphical rules [169] to infer the orientation of as many remaining unoriented
edges as possible using the acyclicity assumption and the fact that all colliders have been found in the previous
step.

Although the PC algorithm was originally developed for the acyclic case, the work [156] shows that PC is also
consistent in the presence of cycles if the learned graph is interpreted in a slightly different way using the so-called
σ -separation [117].

2. tsPC. The naive extension of the PC algorithm to the time series case is called tsPC, an example implementation is
given in [123]. The general idea is to fix an integer τ that is supposed to be equal to or larger than the maximum
max
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time-lag of any edge in the causal time series graph and to learn the finite segment of the time series graph on
a time window [t − τmax, t]. Here, t is an arbitrary reference time step, and samples are created by sliding the
time window over all recorded time steps. This approach implicitly assumes that the causal relationships do not
change throughout the recorded time steps. As discussed in [123], tsPC suffers from a sub-optimal finite-sample
performance due to autocorrelation. This issue is remedied by the PCMCI algorithm, explained below See Fig. 3 for
an illustration of the graphs learned by PC and tsPC for the time series case example.

3. PCMCI. The PCMCI algorithm [170] is a time series causal discovery algorithm that addresses some of the short-
comings of the naive time series adaption of PC, in particular the issue of low detection power. PCMCI assumes
the time series graph to have no contemporaneous causal influences. This assumption implies the absence of
contemporaneous cycles, but feedback cycles involving time lags are possible. Additionally, PCMCI assumes the
time series data are generated by a causally stationary process (that is, the causal relationships are assumed to not
change over time).
As discussed in [123,170], two main challenges with time series data hamper the performance of independence-
based discovery algorithms in time series. These challenges are related to autocorrelation, a common feature in
time series. First, using non-i.i.d. samples (created in a sliding window fashion as explained above) typically leads
to ill-calibrated conditional independence tests, that is, uncontrolled type I errors, because the degrees of freedom
are reduced and cannot be easily measured. This ill-calibratedness leads to inflated false positives, that is, the
discovery of dependence when, in fact, independence is true. Secondly, high autocorrelation implies that there
is little new information in the next time step compared to the previous step. Depending on how the conditioning
sets in conditional independence tests are selected, this results in low effect sizes leading to low detection power
of true links. The effect size of a (conditional) independence test is defined as the absolute value of the population
value of the test statistic; for example, in a (partial) correlation test, the effect size is the absolute value of the
population value of the (partial) correlation. While there is a trade-off in addressing both of these challenges, the
PCMCI algorithm and its generalisation PCMCI+ (see below) algorithms remedy these challenges to an extent by
using a particular choice of conditioning sets in the independent tests that decides about the presence versus the
absence of an edge between a given pair of variables. We spell out the details below.

The PCMCI algorithm unfolds in two phases:
(a) The first phase, referred to as PC1, is a condition-selection phase that aims to infer a superset P̂(X j

t ) of the parents
of each variable X j

t at time step t . The PC1 algorithm is a variant of the PC and works as follows: Each sub-step
of the skeleton phase is indexed by the integer p, starting at p = 0 and successively increasing p in increments
of one. Within each sub-step, the algorithm tests for independence of X i

t−τ and X j
t given a conditioning set that

consists of those p potential parents of X j
t (less X i

t−τ ) that have the highest association with X j
t according to the

previous (conditional) independence tests. This particular choice of conditioning sets increases the effect sizes of
the (conditional) independence tests, as can be understood information-theoretically [171]. A higher effect size
leads to a higher statistical power (equivalently, to a lower probability of a type II error), that is, makes it more
likely to detect dependence if dependence is true. However, since the effects of autocorrelation have not been
dealt with yet, this phase of PCMCI is affected by the same issues as the naive time series extension of PC in
terms of false positives.

(b) The second phase conducts for each pair of variables X i
t−τ and X j

t the so-called momentary conditional independence
(MCI) test that tests the null hypothesis X i

t−τ |H X
j
t | P̂(X j

t )\{X i
t−τ }, P̂(X i

t−τ ). If this hypothesis is not rejected, the edge
between X i

t−τ and X j
t is removed. While the condition on P̂(X j

t ) only would suffice to condition out confounded
and indirect connections, the additional conditioning on P̂(X i

t−τ ) removes auto-dependencies from X i
t−τ such that

the conditional independence tests are well-calibrated and false positives are controlled at the desired level [170].
Note that no orientation phase is required because, by the assumption of no contemporaneous causal influences,
all edges are time-lagged and oriented by time order.

The numerical studies in [170] show that in combination with the MCI tests in its second phase, PCMCI improves
etection power and false positive control compared to the naive time series adaption. The PCMCI+ algorithm [123]
xtends PCMCI to the case where contemporaneous edges are allowed by suitably modifying the MCI phase (but still
isallowing contemporaneous causal cycles and latent confounders). See Fig. 3 for an illustration of this method.

CI-based methods. A major success of causal discovery is the development of methods for learning causal relationships
ithout assuming causal sufficiency. One famous example is the FCI algorithm [43,172,173]. We review the standard FCI
lgorithm and a time series adaption of FCI called tsFCI.

1. FCI. The FCI algorithm generalises the PC algorithm (see above) to the causally insufficient case (see [174]). In
addition to latent confounders, the algorithm can also deal with selection variables. These variables influence
whether a given sample point belongs to the observed population. For example, a certain satellite observation might
be more likely to be made if the cloud cover is not too dense. Consequently, the statistical dependence relations
will be biased (giving it the name selection bias) as only one segment of the entire population of possible satellite
observations is being considered. Below, we assume the absence of selection variables and explain the specialisation
of FCI in this case.
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Quick introduction to maximal ancestral graphs. To deal with latent confounders (and selection variables), FCI works
with a larger class of graphical models than PC does: Instead of DAGs, FCI works with maximal ancestral graphs (MAGs)
[174]. Maximal ancestral graphs can be interpreted as projections of the underlying DAG (which consists of observed
variables, latent confounders, and selection variables) to a graph over the observed variables only, that is, a graph in
which the latent confounders and selection variables have been marginalised out. When assuming the absence of selection
variables (as we do here), it is sufficient to work with a subset of MAGs that are called directed maximal ancestral graphs
(DMAGs) [156].
Directed maximal ancestral graphs can have two types of edges: directed edges (→) and bidirected edges (↔). A directed
edge X → Y says that variable X causally influences variable Y . This causal influence can be direct or indirect through
one or multiple unobserved variables. A bidirected edge X ↔ Y says that X and Y are subject to latent confounding and
that, at the same time, neither X causally influences Y nor the other way around. Being subject to latent confounding
means that there is an unobserved variable L that (potentially indirectly through other unobserved variables) causally
influences both X and Y . In addition, an edge between X and Y (i.e., X → Y or X ← Y or X ↔ Y ) means that X and Y
are not (conditionally) independent given any set of observed variables.
A subtle part of the interpretation of DMAGs is that directed edges X → Y can ‘‘hide’’ latent confounding. That is to say,
while X → Y does say that X causally influences Y , it is possible that X and Y are also subject to latent confounding.

The FCI algorithm works in a way that is similar to the PC algorithm: First, a sequence of (conditional) independence
tests is performed to find the skeleton (that is, the adjacencies) of the graph. Second, several orientation rules
are applied to determine the direction of as many links as possible. For these details, we refer to the original
works [43,172,173] or to more technical reviews of FCI, for example, see Section S2 in the supplementary material
of [127].
As in the case of the PC algorithm, FCI does not learn a unique DMAG but rather a Markov equivalence class of
DMAGs. These equivalence classes are graphically represented by directed partial ancestral graphs (DPAGs) [156,173,
175]. In addition to directed (→) and bidirected edges (↔), DPAGs can also contain edges of the types X◦→Y
and X◦−◦Y . An edge X◦→Y says that Y does not have a causal influence on X while X might or might not have a
causal influence on Y , whereas an edge X◦−◦Y does not make any claim about whether or not X or Y have a causal
influence on each other See Fig. 3 for an illustration of the graph that the FCI algorithm discovers when applied to
time series data. The work [156] has shown that FCI, originally developed with the assumption of acyclicity, can
also be consistently applied to data that is generated by a cyclic SCM with certain regularity conditions.

2. tsFCI. The tsFCI algorithm [176] adapts FCI to causally stationary time series. As compared to the FCI algorithm,
tsFCI applies the following two conceptual modifications: First, lagged links (τ ≥ 1) are by default oriented as
X i
t−τ◦→X j

t . These default orientations are valid because an effect cannot precede its cause. Note that it would not
be valid to orient all lagged links as X i

t−τ → X j
t because X i

t−τ ↔ X j
t (i.e., latent confounding) is a possibility. Second,

so-called homologous edges are by default oriented in the same way. That is if the edge between X i
t−τ and X j

t has
been found to have a certain orientation (for example, X i

t−τ → X j
t or X i

t−τ ← X j
t ) and if in addition there is an edge

between X i
s−τ and X j

s for s ̸= t , then this latter edge is immediately oriented in the same way as the former edge
(for example, oriented as X i

s−τ → X j
s or X i

s−τ ← X j
s). This copying of edge orientations is valid because of causal

stationarity. In addition to these modifications, tsFCI uses the knowledge of time order and causal stationarity to
apply further modifications that are useful from a computational and/or statistical point of view.
There are two versions of tsFCI, both of which have been introduced in the original work [176]: One version does not
allow for contemporaneous causal influences in the data-generating process one version in which such influences
are allowed. Fig. 3 shows an illustration of the output of tsFCI (its version that allows contemporaneous causal
influences) and other FCI-based time series causal discovery algorithms (see below) in the case of an example time
series graph.

Greedy Equivalence Search (GES). GES [128–130] is probably the most famous score-based causal discovery method for i.i.d
data assuming that the true causal graph is a DAG. It performs greedy steps directly on the CPDAG, thus searching in the
Markov equivalent class space Chickering [129] proved that an efficient two-phase greedy search, combined with the BIC
score is sufficient to find the true CPDAG in the large sample limit (the Meek conjecture [128]) assuming causal sufficiency.
Ramsey et al. [131] developed Fast GES (FGES) an optimised and parallelised version of the GES algorithm, which they
were able to scale up to a million variables. Additionally, GES has been improved by bounding polynomially the score
evaluations [177]; to obtain statistical efficiency [178]; to obtain finite-sample correction of confidence intervals [179]
and to deal with latent variables [180]. Similarly to other methods developed for i.i.d. data, (F)GES can be applied to
uniformly-sampled causally stationary time series by simply considering the transformed lagged variables and imposing
that the effects cannot precede the causes in time.

Continuous optimisation methods. A recent advance in structure learning has been the development of so-called contin-
uous optimisation methods, particularly score-based methods which avoid the explosion of the discrete space of DAGs
by employing continuous optimisation. The first such method is the NOTEARS algorithm proposed by Zheng et al. [181]
which proposed h(W) = tr(exp(W ◦ W)) − d as differentiable characterisation of acyclicity for a weighted adjacency

matrix W, that is h(W) = 0 if and only if the associated graph is a DAG. Such differentiable characterisations allow
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he plug-in use of different continuous optimisation methods and even complex function parameterisations [136,182–
87]. Various implementations of the continuous optimisation framework for structure learning from time series are
vailable: (1) DYNOTEARS [132] considers structural linear VAR (SVAR) models, allowing for contemporaneous links
nd enforcing acyclicity among the instantaneous edges. (2) IDYNO [133] is designed to perform structural discovery
rom both observational and interventional data. Moreover, both linear and non-linear relationships are considered. (3)
TS-NOTEARS [134] models cause–effect relationships through one-dimensional convolution neural networks (CNN) and
llows prior knowledge to be encoded and exploited directly by the optimisation procedure.

VAR)LiNGAM. Linear non-Gaussian acyclic model (LiNGAM) [137] is a classical method for causal discovery which assume
cyclicity, causal sufficiency, linear relationships and non-Gaussian additive independent noises. Under those assumptions,
he model is shown to be identifiable thanks to classical results from independent component analysis (ICA) [188].
pecifically, a linear SEM can be represented by,

X = BX + ε, (4)

where X is the vector of system variables, ε the noise vector and B is the matrix of coefficients. Thus solving Eq. (4) for
X we obtain,

X = (I− B)−1ε.

The above equation is an ICA problem, and its theory states that when ε are non-Gaussian noises variables, the mixing
matrix A = (I− B)−1 is identifiable in the large sample limit [188]. LiNGAM-ICA works by first exploiting the ICA results
to obtain the mixing matrix A, and secondly by permuting and normalising A to obtain the appropriate matrix B and the
corresponding causal DAG The LiNGAM can also be solved directly without using ICA [189]. The direct-LiNGAM iteratively
selects the variable which is the most independent from the residual (in a linear regression onto the remaining variables)
and replaces the original data with the residuals matrix. In the end, the procedure gives a causal order; and ultimately,
simple linear regressions (e.g. estimated with least squares) are used to obtain the final estimation of the lower triangular
B matrix.

VAR-LiNGAM [175,190,191] is the extension of the classical LiNGAM model to time series data. It considers a
linear structural vector auto-regressive (VAR) model, with possibly acyclic instantaneous relationships, and assumes
non-Gaussian disturbances. In particular, the process X t is assumed to evolve following

X t =

k∑
τ=0

BτX t−τ + εt .

Where B0 is the matrix of instantaneous relationships and its sparsity pattern corresponds to a DAG while Bτ for τ > 0
are the matrices of lagged relationships; moreover the non-Gaussian noise vector εt has independent components and is
assumed independent over time. Hyvärinen et al. [191] propose two methods to estimate the coefficients of the model
above: (1) a two-stage method which combines least-square estimation of the autoregressive model and classical LiNGAM
estimation; (2) a method based on multichannel blind deconvolution. In Fig. 3, we illustrate that if the assumptions are
satisfied, VAR-LiNGAM is able to discover and orient all causal links.

Structural equation models for time series, TiMiNo. Peters et al. [135] extended the classical structural equation modelling
framework to the time series setting by introducing time series models with independent noise (TiMINo). In particular,
a multi-variate time series Xt = (X i

t )i∈V satisfies a TiMINo if there exists a p > 0 and, for every i ∈ V , there are subsets
PAi

0 ⊆ XV\{i} and PAi
k ⊆ XV for k = 1, . . . , p such that,

X i
t = fi

(
(PAi

p)t−p, . . . , (PA
i
1)t−1, (PA

i
0)t ,N

i
t

)
, (5)

where N i
t are assumed to be jointly independent over i and time and for each i, N i

t are identically distributed in time.
Thus, the assumed model is extremely general, instantaneous relationships are allowed and the noise contribution is not
restricted by allowing arbitrarily mixing through the fi functions. Nevertheless, to prove the identifiability of the full-time
graph and the causal summary time graph, additional assumptions have to be made. Specifically, in Peters et al. [135]
it is assumed that either (i) Eq. (5) follows an identifiable functional model class (e.g. nonlinear functions with additive
Gaussian noise or linear functions with additive non-Gaussian noise [192]) or (ii) each function fi exhibits a time structure,
that is the union of the causal parents of X i

t contains at least one X i
t−k and moreover the joint distribution is faithful with

respect to the full-time graph with the summary time graph being acyclic. Under either assumption (i) or (ii), the complete
causal graph is proved to be identifiable in the large sample limit. Practically, to estimate a TiMINo, methods for causal
discovery for additive noise models with i.i.d. data [193] can be adapted to the time series setting. As in the direct-LiNGAM,
it iteratively selects the causal order between the variables by fitting regression models and evaluating the independence
between the variables and the residuals. To fit the regression models for fi, various methods can be used, such as vector
autoregressive models (linear), generalised additive models or Gaussian processes. Moreover, to test independence from
the residuals, the HSIC [194] can be applied to all possible shifted time series up to the maximum lag order.
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nvariant causal prediction. Invariant causal prediction deals with the setting of independent and identically distributed
amples of the random vectors X = (X1, X2, . . . , Xp)⊤ ∈ Rp, E = (E1, E2, . . . , Eq)⊤ ∈ Rq, and Y ∈ R. For a variable or vector
of interest Y , E is a set of environment variables that may be causes of X but are not direct causes or effects (direct or
indirect) of Y . ICP assumes that Y is generated causally from a subset S∗ ⊆ {1, . . . , p} of the p variables considered, so
that there is causal sufficiency, and Y is generated from a Structural Causal Model obeying:

Y = g(XS∗ , ϵ), ϵ ∼ F , ϵ |H XS∗ , (6)

here g and F are arbitrary functions and distributions, respectively. A set S ⊆ {1, . . . , p} is a generic subset of the full
set of candidate causes. We refer to S and XS interchangeably for brevity. The task of ICP is to infer the set S∗ of direct
causes of the variable of interest Y .

The Invariance Causal Prediction (ICP) framework [148] is based on the observation that Y is independent of E given XS∗ ,
denoted Y |H E|XS∗ . Assuming we have a set of candidate causes X that includes S∗, the causal subset, and an environment
variable E that we know does not directly cause Y or is an effect of Y . We can search for S∗ by applying a conditional
independence test Y |H E|XS on Y , E and subsets S ⊆ {1, . . . , p} of X . ICP then selects as causal variables the intersection
of all those subsets S where the corresponding conditional independence test is not rejected:

Ŝ∗ =
⋂

S:pS>α

S. (7)

Here pS is the p-value associated with the conditional independence test of Y |H E|XS , with the null hypothesis cor-
responding to conditional independence. We do not reject conditional independence at significance level α if pS >
α.

One way to interpret the problem setting is that causal associations are more robust than other associations. So
ICP finds the causes of a variable of interest by investigating which associations are invariant across environments.
Another interpretation is that the environment variables define data generated under different interventions to the system
(SCM). In physical sciences, regional and temporal variables are good candidates since these often describe changes in
environments that alter the conditions under which physical processes occur.

Peters et al. [148] introduce an algorithm to implement ICP that assumes linear relationships between causes X and
effects Y and a categorical, univariate variable E. In [195], more general algorithms are presented that allow for nonlinear
relationships between cause and effects and for continuous and multivariate environment variables E. Pfister et al. [196]
provide an ICP variant for time series data. The proposed time-series ICP relies on the causal invariance assumption across
time points, thus removing the requirement of environment knowledge. This setting is also partially robust to hidden
confounders, similar to the original ICP [148] framework, and in general, the ICP is expected to be conservative with
respect to violations of its assumptions [196].

Causal frameworks for continuous-time systems. As we already reviewed, discrete-time causal systems fit directly as an
extension of i.i.d. and DAG framework. When considering discrete-time systems, we can express the value of a variable
at a time t as a function of other variables (and itself) observed at past instants, thus the complete causal graph can be
seen as a DAG extended (possibly infinitely) in time. Classical methods for causal discovery in the i.i.d. setting can then
be adapted to discrete-time systems quite straightforwardly.

Conversely, considering continuous-time systems, raise the issue that a time-extended DAG is not feasible, since
the included variables would be uncountable [197]. Nevertheless, modelling continuous dynamical system helps in
dealing with non-uniform sampling and extrapolating among different sampling frequencies, two major drawbacks
of causal discovery methods for discrete-time systems. The following are the major causal frameworks available for
continuous-time systems:

1. Causal interpretation of ODE and SDE. Various efforts have been made to describe causal systems with ODEs and
SDEs. First, causal discourses around ODE were used to obtain different justifications for the cyclic SEM [198–
201]. Rubenstein et al. [153] described Dynamical Structural Causal Models (DSCM) as extensions of SEM where
each equation or assignment is a relationship between a set of causal parent trajectories and an effect trajectory.
Under some stability conditions, such DSCM can be obtained from ODE systems SDEs have also been studied
from a causal perspective [197,201]. The advantage of SDEs in modelling physical systems is that they allow
incorporating an inherent source of stochasticity, a common assumption in numerous real-world systems [202].
Graphical parameterisations of SDE equilibrium distributions leading to models allowing for cycles have been
investigated and different structure learning algorithms have been proposed [203].

2. Dynamic Causal Models. Dynamic Causal Models (DCM) [202,204–207], in short, is a Bayesian framework for
fitting and comparing causal models for coupled dynamical systems. DCM was introduced and applied mostly
in Neuroscience, and particularly in the problem of estimating the connectivity between brain regions from
neuroimaging data, as discussed in detail in Section 4.2.2. Recently, and it has been even employed to model the
COVID-19 pandemic dynamics [208,209].

3. Local independence graphs. Local independence is a notion of conditional independence for stochastic processes
(both discrete and continuous time ones) which can be (in)dependent on each other pasts. In detail, for real-valued
stochastic processes X = (X1, . . . , Xp) and A, B, C ⊆ {1, . . . , p), we say that XB is locally independent of XA given
t t t
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XC at time t if the past of XC until time t provides the same information, to predict E[Xβt |FA∪C
t ],

3 as the past of
XA∪C until time t , for each β ∈ B.
Didelez [211,212] studied graphical representations of local independence with directed graphs together with δ-
separation and proved the equivalence of the pairwise and global Markov properties for multivariate counting
processes Directed graphs and δ-separation has been then extended to mixed graphs and µ-separation [210] to
model partially unobserved systems A constrained-based algorithm has been proposed [213], which is proven to
be sound and complete under faithfulness assumption. Local independence graphs can be applied to multivariate
processes which are solutions of SDEs (such as the multivariate Ornstein–Uhlenbeck process) or event and counting
processes such as Hawkes processes [214].

2.2. Challenges

In this section, we discuss several challenges for causal discovery that are frequent in real-world applications. We
distinguish between challenges related to the data-generating process itself (see Section 2.2.1), challenges associated
with the available data (see Section 2.2.2), and challenges of statistical or computational nature (see Section 2.2.3). Users
should carefully consider the challenges they face in their application and choose a suitable causal discovery method.
More generally, how to reason and deal with typical challenges in causal inference is further discussed in a time series
context in Runge et al. [115].

2.2.1. Process challenges

‘‘Discovering causal relations from observational data is im-
possible without assumptions about the mechanisms and faces
important challenges related to data and statistical character-
istics. The field will need to incorporate domain knowledge and
post-selection inference.’’

Non-linearities pose challenges for causal discovery
n both independence-based and score-based methods.
on-linear conditional independence tests, such as the
PDC test [215] and tests based on conditional mutual
nformation [145], are computationally more expensive
nd tend to have lower statistical power than linear
ests. Non-linear functional relationships in score-based methods require more complex score functions, which can
ecrease finite-sample performance. However, non-linear functional relationships can enhance identifiability in some
symmetry-based causal discovery methods [9]. Overall, nonlinearities increase model complexity and require careful
onsideration when selecting appropriate causal discovery methods.
Most time series causal discovery methods assume data generated from a causally stationary process with a unique

quilibrium distribution. However, many real-world processes are non-stationary. Recently there have been works on
evising causal discovery methods that first detect the variables afflicted with non-stationary driving mechanisms
nd subsequently infer the entire causal graph, including possibly proxy variables corresponding to the driving force
f non-stationarity [149,216]. Furthermore, techniques exist to detect regime or context changes in non-stationary
ata [216–218], but it remains an active area of research. Domain experts may be able to identify the source of
on-stationarity in time series data and preprocess the data to remove it.
Time series data is common in physical sciences, and it has a distinctive feature of auto-correlation. Many causal

iscovery algorithms are not designed for time series data and show decreased performance when applied without
odification [123,170]. However, some methods are specifically designed for time series data, reducing the detrimental
ffect of auto-correlation. See the PCMCI algorithm above for a discussion on the challenges of auto-correlated data.
n many domains, space adds to time as well. In principle, one could feed different spatial locations of the same
ariable as distinct variables into causal discovery methods. However, this naive approach ignores spatial correlations and
uickly results in a high-dimensional problem. Another workaround, employed for example in [219,220], is to perform
imension-reduction as a preprocessing step and then perform causal discovery on the dimensionally-reduced space. The
evelopment of causal discovery inherently designed for spatio-temporal data is an active area of research; for example,
ee [221] Dealing with variables whose dynamics operate on different time scales, such as e.g. fast atmospheric and
low oceanic processes, pose important challenges. Granger causality in the frequency domain, e.g. [222–224], and a
ombination of wavelet analysis with transfer entropy [225] are examples of approaches to deal with the time scales
f causal influences.
Finally, it is worth mentioning that many causal discovery methods assume the data-generating SCM to be acyclic (see

xis VII in Section 2.1.2). However, in real-world applications, one can often not exclude the existence of feedback that acts
n time scales below the measurement interval. Such feedbacks make the time series graph cyclic. In the non-temporal
etting, one might often not be able to exclude the existence of causal cycles. As discussed and referenced above, there
re causal discovery methods that can handle cyclic causal graphs.

3 Where FA∪C
t is a right-continuous and complete filtration which represents the history of the processes XA∪C see e.g. [210] for a detailed

escription.
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.2.2. Data challenges
Various data challenges arise when tackling the problem of causal discovery in practice. This is mainly due to the

iscrepancy between the assumed hypothesis needed from each method or framework and the real-world data. One of
he most common assumptions of most causal discovery methods is causal sufficiency, which is the hypothesis that all
elevant variables are observed. Unobserved variables are especially problematic when they are possible confounders
etween system variables since omitting confounders from the causal discovery could lead to learning spurious or
rong relationships. There are some available methods which do not assume causal sufficiency, such as LPCMCI [127],
VAR-FCI [126] and GPS [180] (see Section 2.1.3).
Missing data and selection bias are other common issues in real-world applications, and there have been some efforts

n developing causal discovery methods which are resilient to these challenges [226–229]. Not always, especially in the
hysical realm, the data follow predictable and well-behaved distributions. One such example is zero-inflated data, which
s common, for instance, in gene expression data, where single-cell expressions lack detectable values of transcripts that
ppear abundant on bulk (thousands of cells) gene expression experiments. Recent advances have developed graphical
odels and causal discovery methods in such scenarios [230,231].

.2.3. Statistical and computational challenges
The high dimensionality of data in physical systems, such as spatiotemporal data, and small sample sizes are central

tatistical challenges for causal discovery. On the other hand, large sample sizes raise issues of unaffordable computational
ime, which can scale up to cubically for kernel methods typically used for independence testing [194,232]. High-
imensional data leads to large conditioning sets in particular algorithms, effectively reducing the sample size available
o test the hypothesis.

As noted in Section 2.2.1, non-linearity is a common characteristic of processes in the physical sciences. For the case of
ndependence-based or hybrid casual discovery techniques, this calls for devising non-parametric tests of independence,
or instance, tests based on measures of conditional mutual information [145], or on Gaussian process regression or other
ernel-based measures on independence [194], or using quantile regression [233] and copula-based methods [234] (also
pplied to Granger causality), etc. The no-free-lunch theorem of [235] states that no single conditional independence test
an have power against all alternatives. Here, the challenge lies in devising and applying (a combination of) conditional
ndependence tests that are the most suited for a particular physical system.

The concept of post-selection inference [236] involves performing statistical inference on a model that was selected
ased on data-driven methods rather than being pre-selected. While there are some advances in solving the post-selection
nference problem for regression and causal effect estimation, few solutions have been proposed for the inference after
ausal discovery setting [236–238]. One possible solution is sample-splitting, but this is often statistically inefficient.
recent development is the randomised version of the greedy equivalence search (GES) algorithm, which allows for

inite-sample correction of classical confidence intervals [179].

.3. Opportunities for the physical sciences

The field of causal discovery from observational data is still in its infancy but growing in methodologies, theoretical
uarantees of performance, and empirical evidence. Causal inference, in general, is a vast field that offers alternatives
nd scientific opportunities that we review in what follows. Only revisiting the whole body of empirical science based on
ssociation would take a village, but the advances would pay off.

.3.1. Causal hypothesis testing and targeted interventions
‘‘Observational causal discovery offers rev-
olutionary opportunities to test hypothe-
ses, evaluate the impact of interventions,
attribute extreme events with counterfac-
tuals, and characterise complex systems
by deriving causal pathways and robust
forecasting models.’’

Scientists need a principled way to test different hypotheses against
each other. A causal hypothesis is a supposition or theory about how things
interact, specifically on whether one thing causes another. Causal studies
aim to confirm or reject any given causal hypothesis. The problem is that
hypotheses in the physical sciences are often presented as narratives giving
a chain of causal factors that lead to the studied phenomenon. Without a
causal vocabulary and analytical tools, it is often impossible to precisely
state the hypothesis, which leads to several competing hypotheses or, even worse, a false hypothesis, which is accepted
as true due to its compelling narrative quality. Testing hypotheses have been conducted in myriad ways [3,9,239].

Causal graphs, as graphical representations of assumed or learned causal relations, provide a more principled way to
talk about causal hypotheses. Learned graphs imply causal links and pathways and provide evidence for deciding between
rivalling causal hypotheses, in Kretschmer et al. [240], for instance, regarding competing hypotheses of Arctic climate
teleconnections.

The conclusiveness and interpretability of discovered causal graphs from purely observational datasets on the often
untestable validity of the methods’ assumptions and the statistical complexity of the task. But observational causal
discovery can help inform more targeted subsequent interventions, which are often too expensive to employ on a
large scale [3,239]. Incorporating interventions, if performed meaningfully, could thus make the causal discovery process
20
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uch more efficient and robust (discovered DAGs not being confined to the Markov equivalence class). Interestingly,
nterventions could be differentiable, i.e., ‘learnable’ from data [241].

.3.2. Cause–effect estimation
Causal discovery results in qualitative causal graphs, or often Markov equivalence classes of graphs. But often, the

arget question is a quantitative estimate of a causal effect of one variable X on another variable Y , as pioneered
by Pearl [3]. This topic is discussed in a time series context in Runge et al. [115]. The quantity of interest then is
the (interventional) distribution of Y given an intervention in X , p(Y = y | do(X = x)). The fundamental problem is
hat typically p(Y = y | do(X = x)) ̸= p(Y = y | X = x). Confounders, for example, can introduce a non-causal
association between the treatments and the outcome. Randomised experiments would be the gold standard by eliminating
the unwanted non-causal associations [3,242,243]. The goal of causal effect estimation is to do so without access to
interventions by expressing p(Y = y | do(X = x)) as a function of the observational distribution p(x):

p(Y = y | do(X = x)) = function of p(x) . (8)

If such a re-expression is possible, one calls the causal effect identifiable and obtains a causal estimand, which involves
only the observational distribution. The most well-known method for causal effect estimation from data without
parametric assumptions is covariate adjustment [3], which refers to de-confounding the causal relationship by adjusting
for a set of variables Z. In the general case, the adjustment formula is

p(y | do(X = x)) =
∫

p(y | x, z)p(z)dz . (9)

Recent work has focused on finding statistically optimal adjustment sets [244], i.e., for which the estimators have minimal
variance. Using the do-calculus [40,245–247], it is possible to determine whether a causal effect is, in principle, identifiable
from observational data or not. To this end, causal effect estimation requires fully specified causal graphs from causal
discovery (with its inherent reliance on further assumptions) or domain expertise that can qualitatively specify a causal
graph. For example, it is known that temperature influences ecosystem respiration, but one may want to quantify how
much when given a graph of other observed and unobserved confounding variables. The graph then encodes assumptions
about the absence and presence of causal relations.

Different variants of causal effects can be defined based on the interventional distribution p(y | do(X = x)), and an
estimate then involves further parametric assumptions. For example, in a linear model, the total causal effect on the
expected value of Y when setting X by intervention to x′ as opposed to x is given by

∆X→Y (x′, x) = ∆x · βX→Y , (10)

where ∆x = x′ − x and βX→Y can be estimated as the regression parameter of X in the linear regression of Y on X ∪ Z.

2.3.3. Causal pathway analysis and mediation
Next to quantifying the overall causal effect of X on Y , a relevant follow-up question is often about the causal pathways:

the mechanisms by which this effect propagates. In complex systems, it is often interesting to analyse how perturbations
spread throughout the systems and through which subprocesses perturbations are mediated [124,171]. Within the
structural causal model framework, mediation formally leads to counterfactual quantities, see, for example, VanderWeele
[248] and briefly below in Section 2.3.8. But for linear models, the mediated causal effect (MCE) of X on Y that passes
through a mediator M (here X, Y ,M ∈ V) can be computed by summing up the contributions along all paths passing
through it:

MCE(X, Y |M) =
∑
πM
k

∏
λi→j∈π

M
k

βi→j , (11)

here the summand iterates over causal paths πM
k from X to Y through M and the product is over all links λi→j on each

ath. The link coefficient βi→j can be estimated as the regression coefficient of V j
t in the linear regression of V j

t on the
parents of V j

t . Mediation analysis can also answer the complementary question: how strong is the direct effect of X on Y .

.3.4. Identifying causes and pathways leading to anomalies
Anomaly detection [249] is an important problem in engineering and the physical sciences. In Earth sciences, extreme

vents form a subclass of anomalies and can be structured across different dimensions, such as compound extremes [250].
hile detecting anomalies is an important problem, it does not answer the often relevant question of what causes
particular anomaly or, more generally, what causes the anomalous process. In engineering, business science, and
ealthcare, a related problem is root cause analysis [251]. Causal discovery can address the problem of identifying
ausal drivers (parents) or indirect mediating pathways and facilitate quantitative analyses to analyse the contribution of

ifferent physical drivers in causing an extreme.
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.3.5. Causal complex network analysis
Complex systems are often viewed as networks of interacting subprocesses, for example, the human brain [252], or

he Earth system [253,254]. Tools of network theory [255] have been used to analyse quantities such as the information
low as it propagates through the system or the stability of subprocesses [256]. A common network measure is the node
egree, which quantifies the number of processes linked to a node. A more involved measure is betweenness centrality,
hich quantifies the number of shortest paths through a particular node. A crucial question is then to define what these
aths mean. In works where the networks are based on pairwise correlation or mutual information [253,254], one may
ssociate paths with a transfer of information.
However, there is a difference between information being transferred versus perturbations propagating through

he network. Here a question can be to identify how critical individual subprocesses are in spreading and mediating
erturbations in such dynamic complex systems. The propagation of perturbations, aka interventions, relates to a causal
uestion requiring a causal definition of network links able to distinguish direct from indirect interactions.
In addition, the toolbox of classical network measures is not rich enough for quantifying gateways and mediators

f perturbations. Essentially, these measures—with many originating from the social sciences [257]—are based on a
ifferent definition of links, for example, two persons knowing each other, as opposed to dynamical interactions in
complex system. Hence, here measures based on causal pathways on which perturbations propagate in a complex

ystem’s interaction network can be utilised, such as those studied in Runge et al. [124] and Runge [171]: Identifying
he nodes of the causal graph with the components of the complex system, the average causal effect can be defined
s a causal version of the out-degree or closeness centrality, which quantifies by how much an individual component
auses any of the remaining components. This serves as a quantitative measure of how much a component is a gateway
f perturbations. On the other hand, the average causal susceptibility measures how much a component is changed on
verage by a perturbation in any of the remaining components as a causal version of the in-degree or in-closeness. Finally,
he average mediating causal effect measures how much of the pairwise causal effects between any pair are mediated
hrough a particular variable, which can be seen as a causal version of betweenness centrality. In Runge [171], these
easures are generalised in an information-theoretic framework.

.3.6. Causally robust forecasting models
Forecasting a time series frommultivariate predictors constitutes another problem where causal knowledge helps. Even

onsidering the case of forecasting inside the same distribution, that is, assuming a stationary distribution, it can be proven
nformation-theoretically that causal predictors maximise the mutual information with the target variable and, by the
arkov property, any further predictors do not add further information. More formally [258], the negative log-likelihood
an be decomposed as follows

lim
n→∞
−l = lim

n→∞
−

1
n

n∑
t=1

log p̂ (Xt+1 | P; θ) (12)

= E
[
log

p(Xt+1 | P)
p̂(Xt+1 | P; θ )

]
+ I

(
Xt+1;X−t+1 \ P | P

)  
=0

+ H
(
Xt+1 | X−t+1

)
, (13)

where n is the sample size, p̂ (Xt+1 | P; θ) the prediction model for Xt+1 ∈ Xt+1 of the true underlying p (Xt+1 | P) given its
causal parents P and model parameters θ . As shown, the log-likelihood decomposes into the model approximation error
given P (first term), the conditional mutual information between the target and unselected variables X−t+1 \ Xt+1 given
P (second term, zero by the Markov condition), and the irreducible entropy or uncertainty (last term). This is especially
relevant for finding optimal sets of predictors in the case where greedy selection strategies do not work because the
predictors cause the target variable synergistically, for example, Xt+1 = Z1

t · Z
2
t + ηt+1. As shown in Runge et al. [259], an

optimal subset selection can be better performed on the smaller subset of causal predictors. In Kretschmer et al. [260]
and Di Capua et al. [261], causal pre-selection was used in a climate context Beyond stationary distributions, Huang et al.
[262] address the task of causally-informed forecasting under nonstationary environments through state–space models.

2.3.7. Physical simulation model evaluation
Causal graphs and causal effects can be utilised to intercompare the output of physical models and evaluate and

validate them against observations at the level of causal dependencies [45,263–265]. One approach in this direction is
to compare the causal graph obtained from the observational data to those obtained from simulated data. This procedure
has been proposed in the climate sciences to compare climate model simulations and observational data through their
corresponding causal graphs derived from PCMCI [265], cf. Section 4. The methodology could be adapted and applied to
other physical science problems where one typically has complex datasets and simulations to confirm hypotheses.

2.3.8. Counterfactual causal attribution of extreme events
Counterfactual questions are not about the distributions of a target variable due to possible (future) interventions,

but about the distribution of a target variable for an alternative past intervention, given that a particular outcome was
observed. Formally, just like interventional causal queries are represented by interventional SCMs, counterfactual queries
22
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re represented in counterfactual SCMs [3,9]. Given an SCM over variables V and observations v, in the counterfactual
CM, the noise distribution is updated such that the V = v holds. Then the noise terms may not be independent anymore.
Counterfactual queries are then do-statements in the counterfactual SCM. One example of a counterfactual distribution
query is p(y′x′ |yx), which specifies the probability of observing Y = y′ ̸= y under the hypothetical past intervention
o(X = x′) when, in fact, Y = y was observed under the intervention do(X = x). Such queries can be computed in
ifferent ways [3,266] and generally require more assumptions about the underlying structural causal model than causal
ffect questions or causal discovery. Next to counterfactual distributional queries, Halpern [267] discusses causation and
ounterfactuals regarding single events.
An example of a counterfactual question in climate is the causal attribution of extreme events [268]. The above query

(y′x′ |yx) is one specific type of a counterfactual question and is sometimes called ‘‘probability of necessity’’ (PN), which
s typically the quantity of interest in lawsuits. Extreme event attribution requires to study of anthropogenic forcings
ompared to their absence, that is, solely natural forcings or internal variability of the climate system. If the probability
f necessity is high enough, then a human-caused extreme event is established.

.3.9. Signal tracking for the discovery of proximal causes
Many phenomena, such as extreme events in complex systems, such as El Niño events in the climate system and

xtreme volatility in the financial system, are caused by an initial anomaly that triggers a travelling cascade of events [269].
his phenomenon is often called the ‘‘butterfly effect’’,4 characterised by an anomaly in one part of a system having
xtreme consequences in another space and time. Such cascaded events are challenging to detect, predict, understand and
haracterise [270,271], and has led to the development of the field of the science surrounding the concept of predictability
n complex systems [272–274]. A potential strategy for uncovering the cause of notable events is causal discovery, for
nstance, by conducting a simulation which begins from the start of the event in question and tracing the initiating signal
ack to its source. However, this presents difficulty in determining the initiating trigger. It is challenging to have a dialogue
bout recognising the drivers of intense impacts because the amount of correlated drivers is usually much greater than
he number of causally pertinent drivers, which may only have a substantial effect when combined (synergy) [10]. These
inds of relations are hard to portray with a pairwise network.

.3.10. Causal benchmarks, software and platforms
Method development and comparison require benchmark datasets with known causal ground truth for validation.

deally, such ground truth comes from expert knowledge of real data or actual experiments that can also be used to falsify
ausal relationships predicted from observational causal inference methods. Unfortunately, in many fields, such as Earth
ystem sciences, such datasets exist only for expert-labelled causal relations among a few variables (e.g., some bivariate
xamples [275]). A tractable approach is to generate synthetic data with simple model systems that mimic properties
nd challenges of data from the system under study but where the underlying ground truth is known. These can then be
sed to study the performance of causal discovery (and causal inference methods more generally) for different challenges
n realistic finite sample situations. From a practitioner’s perspective, it is essential to determine which method is best
uited for a particular task with particular challenges and for a specific set of assumptions. Synthetic data, adapted to
he problem at hand, can be used to choose the suitable method, including method parameters. A list of key methods for
ausal discovery and the available software and platforms is given in Table 3. An example is the SAVAR model [219] that
imics spatio-temporal features of climate data. The website causeme.net [10,276] aims to provide an open platform with
ynthetic models mimicking real data challenges on which causal discovery methods can be compared. Next to method
omparison, the platform also calls for submissions of actual and modelled data sets where the causal structure is known
ith high confidence and was used on the Causality 4 Climate NeurIPS competition [276]. That competition sparked the

nvestigation of a particular property of synthetic data and models called var-sortability, which led to new insights in
ausal discovery methods [277].

.4. Perspectives

This section reviewed causal discovery in the physical sciences, describing the main methods, challenges, and
pportunities for future research. We laid out the fundamental elements of the causal discovery framework—SCMs,
raphs, and associated distributions—and gave an overview of the methodological concepts of learning qualitative
ausal graphs [10,115]. We deliberated on commonplace difficulties encountered in the field, such as determining and
reprocessing causal variables, addressing non-stationarity, contemporaneous causation and hidden confounding, and
electing parametric models for nonlinear dependencies and non-Gaussian distributions. Section 4 will illustrate causal
iscovery methods in neurosciences and Earth sciences case studies.
The body of causal inference has traditionally been embedded in several communities, mainly statistics, social sciences,

conometrics and health sciences. Irreconcilable positions and long-standing discussions exist [281]. Pearl argues that

4 The term is attributed to Lorenz when he noted that a weather model failed to reproduce the results of runs with the unrounded initial
conditions. However, the idea was earlier recognised by Poincaré and further formalised by Wiener. The analogy became popular and originated the
quantitative science of characterising instability in complex systems undergoing nonlinear dynamics and deterministic chaos.
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Table 3
Methods and open-source software for causal discovery.
Method Software

Granger causality (GC) [35], kernel GC [167], explicit KGC [119] causal-learn, statsmodels, KGC, XKGC
CCM [39,278] rEDM
PC [43,279], FCI [176] Tetrad, causal-learn, pcalg, Tigramite, MXM, bnlearn, dbnlearn, PyWhy
PCMCI [170], PCMCI+ [123], LPCMCI [127] Tigramite
DYNOTEARS [132] Causalnex
TiMINo [135] R script
VARLiNGAM [191] causal-learn, lingam, original R code
ICP [148,196,280] seqICP

it is essential to distinguish between causal and statistical information, as they refer to two separate concepts,5 and
suggests that clear distinctions should be established in the notation used, and each should be subject to different means
of calculation [282]. Arguably, nonparametric SCMs (as a natural generalisation of those used by econometricians and
social scientists in the 1950–1960s) have developed the field of causality in new mathematical underpinnings: explicate
and enumerate causal assumptions, test implications, decide measurements and experiments, recognise and generate
equivalent models, recognise instrumental variables, generalise structural equation models and solve the mediation and
external validity problems. These tools, methods and solutions help to determine the accuracy and validity of causal
claims in the analysis. The machine learning community is approaching the field of causal discovery in innovative ways by
leveraging data, assumptions and models collectively. In recent decades, mathematical foundations have been established
to address questions of causality in various scientific fields, mainly emerging for statistics and machine learning [3,9,43].
The causal machine learning (CausalML) field has recently introduced [283] as an umbrella for machine learning methods
based on SCMs. It aims to advance the field in several directions: causal supervised learning, causal generative modelling,
causal explanations, causal fairness, and causal reinforcement learning. Applications of the new methods are vast and
promise advances in computer vision, natural language processing, and graph representation learning. Therefore, the field
of causal discovery is growing in methods, approaches and impactful applications. A unified agenda for Causal Inference
is built and deployed in the wild.

However, despite the significant advances in the last decades, many unresolved philosophical and methodological
issues remain for causal discovery from observational data. All such challenges also create avenues of research On the
one hand, we identified and discussed algorithmic and data challenges and summarised possible ways to address them in
Section 2.2. Indeed, we must develop more effective methods for incorporating (uncertain) expert knowledge, determining
the spatio-temporal complexity of the underlying dynamic phenomena, and creating more reliable and statistically
efficient algorithms.

On the other hand, perhaps the most critical challenge is the theoretical impossibility of causal discovery from purely
observational data [8]. There are, however, ways to tackle the challenge. For example, specifying a causal DAG using
domain knowledge can help mitigate the potential inaccuracy of their assumptions of sufficiency and faithfulness. Another
possibility to learn about a certain equivalence class may consider incorporating domain knowledge into structure learning
algorithms by using ‘‘allow lists’’ and ‘‘deny lists’’ to determine which edges should or should not be included in a DAG or
creating a Bayesian prior to assigning varying levels of probability to certain causal relationships [284,285]. This is very
much related to using inductive biases (such as Occam’s razor) [286] and causal invariances (such as parameter modularity
and independence of mechanism) [150] to learn structure beyond likelihood-based scores and conditional independence
constraints. Finally, if data from natural experiments, such as do(A = a), is available, this intervention information can be
incorporated into the algorithm [287] to automate this reasoning process. Incorporating the abundant domain knowledge
within the causal discovery routine can address the identifiability and faithfulness assumptions (very much in line with
the basis or sparsity priors used in equation discovery, cf. Section 3). By joining forces, both can contribute to resolving
pressing scientific issues, ranging from process comprehension to evaluating and upgrading the physics included in physics
models.

Many problems in the physical sciences can be framed as causal questions. Yet many researchers in economics and
health services, and even many computer scientists in machine learning, have been trained to be reluctant to use the
language of causality [57,281,282,288]. This is a cognitive barrier to resolve in the future. Besides, the language barrier
between the methodological and domain science communities is a significant challenge in the causal discovery endeavour.
Bridging this divide by translating domain questions into actionable and precisely stated causal inference tasks seems
reasonable. Additionally, hesitance to adopt causal inference can be attributed to the lack of suitable benchmarks to help
choose an appropriate method. A benchmarking platform (https://causeme.net) was introduced that covers the causal
discovery problem setting. It is necessary to have more of these benchmark platforms and easily accessible databases
to facilitate better collaboration between the two communities. To successfully address a causal inference problem, it is

5 Statistical information deals with the probability of certain variables being observed. In contrast, causal information deals with hypothetical
relationships in new situations.
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Fig. 5. Historical Inspirations/Motivations in Law/Equation Discovery.

essential for the domain scientist and computer scientist to work together; assumptions must be discussed and formalised,
data characteristics must be jointly analysed, and conclusions must be assessed from both perspectives.

It is commonly believed that most research questions in science can be interpreted as causal inference problems.
Sentences such as ‘‘we find that X [increases/decreases/lags/leads/affects/drives/impacts] Y ’’ are often found in papers,
reating an impression of causality. Nevertheless, scientists should be more explicit and transparent when making
ssumptions which lead to causal conclusions. This is not only sensible but is also necessary when analysing complex
ystems like the Earth, the Brain, or the Economy, since the outcomes of such research may have significant economic,
nvironmental, and social implications. The field of Causal Inference provides a comprehensive arsenal of tools grounded
n rigorous mathematical principles and a vibrant interdisciplinary milieu to confront the challenge at hand successfully.

. Learning physical laws from data

‘‘For centuries, scientists observed Nature
to extract simple laws and equations to
explain the world mechanisms, to antici-
pate and predict behaviours and gain faith
in their interventions/actions.’’

Distilling mechanistic models of the world is how physicists have suc-
cessfully understood and explained the natural world. The prototypical
process starts with an experiment or observation. A mathematical model
is hypothesised, which can predict a new experiment’s outcome. The ob-
servations will either support or falsify the hypothesis, leading to more
experiments and refined models.

For many complex systems, we have poor models because certain interaction terms are unknown. Another case is
when we know some microscopic interaction laws. Still, the emergent properties at a larger scale do not directly follow,
such that predictions at the larger scale need new coarse-scale interactions. To cope with these situations and make
sense of the sheer amount of data produced by modern instruments, researchers have been looking into automating the
processes involved in model building and creating new insights. Many motivations and inspirations have been adopted
to guide the scientific method development (see Fig. 5): e.g. a physical law or equation describing the system should
be compositional, thus following the ‘‘divide and conquer’’ rule, should be as simple as possible (but not simpler) thus
following Occam’s razor, further developed and formalised by Solomonoff, eventually focus on the interesting parts of the
system and disregard the rest, create understanding, generalise and unify different working theories and models, and the
learned representation (and its parameters) should be self-explainable, amenable and intuitive.

This section reviews the state-of-the-art in equation discovery from data. Unlike in traditional law discovery à la Kepler
here trial-and-error was dominant, modern statistics and machine learning techniques exploit the regularities found in
he data to discover plausible, simple and explainable equations, to learn feature representations that describe (typically
ynamic) systems. We will first consider the explicit discovery of equations that describe observed data, also called
ymbolic Regression. Second, we look into implicit discovery through dimensionality reduction techniques and transfer
perators. We finish the section by discussing the main challenges and research opportunities.

.1. Explicit equation discovery with symbolic regression

Symbolic Regression (SR) refers to a class of machine learning techniques that aim to discover mathematical relation-

hips and patterns in data. SR aims to find a compact, human-readable mathematical expression that accurately reflects the
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Fig. 6. Illustration of a Pareto curve of solutions to an SR problem.

underlying relationships in the data. This approach is particularly useful in cases where the relationships between variables
are complex or unknown, and traditional statistical methods may not provide adequate explanations. SR operates under
the assumption that the underlying data-generating mechanism can be described by a sparse and algebraic input–output
relationship.

There is a major divide in the method to achieve that. One class of methods use genetic algorithms or other discrete
search methods to find mathematical terms, typically represented by a graph of mathematical operations. Another class
of methods uses continuous space search methods and solves a relaxation of the discrete problem of finding compact
equations. A third and most recent addition to the family of symbolic regression methods uses massive amounts of
synthetic data for pretraining a system that can quickly guess a suitable expression at test time.

More formally, we are trying to solve the following optimisation problem:

argmin
f

E(x,y)∼D∥f (x)− y∥2 + λC(f ) (14)

here we attempt to find a low-complexity function (equation) f that best6 maps the inputs x ∈ Rn to their corresponding
utputs y ∈ Rm in the data distribution D, C(f ) refers to a measure of complexity of f , and λ is the weighting factor. For

instance, the complexity measure could be the number of terms in the equation.
A central problem when performing symbolic regression is selecting an appropriate weighting factor. More generically,

the question is which level of complexity is right.
There is probably no definite answer to this question. Instead, we consider the solution to a symbolic regression

problem as a family of Pareto-optimal solutions:

f (c) = argmin
f

E(x,y)∼D∥f (x)− y∥2 s.t. C(f ) = c (15)

here f (c) refers to the best fitting expression with complexity c. A more complex expression will be able to fit the given
ata at least as well as a less complex expression. Fig. 6 illustrates a typical Pareto curve along the optimisation objectives:
oodness of fit (error reduction) and function complexity. In addition to the training error, which monotonically decreases
ith function complexity, the illustration also shows a hypothetical test error that shows the overfitting of too complex

unctions.
We will now look more closely into different methods that have been proposed to solve the optimisation problem Eq.

15) in practice.

.1.1. Symbolic regression using discrete search methods
The problem of symbolic regression is, at its core, a search for suitable functions f in (15). Since those functions should

ave low complexity, it is natural to attempt to perform a search for functions. The first attempt to do that was proposed
y Cramer [289] by inventing Genetic Programming, which got popularised and applied through Koza [290,291]. The idea
s simple: search for computer programs to solve a particular problem by iteratively creating many random programs and
electing the best fit, and create a new pool of candidates by recombination and random modification. This mimics the
iological evolution process of nature to create the genetic material of living organisms. Applied to symbolic regression:
he functions are represented as a graph of input variables, operators and basic algebraic functions.
In the paper by Schmidt and Lipson [76], this approach was refined and applied to the discovery of physical laws. As the

ethod was indeed able to discover Lagrangian and Hamiltonian formulations from data, it stimulated a growing interest
n symbolic regression and sparked the development of many methods. These general search methods are also referred
o as evolutionary algorithms. The approach of Schmidt and Lipson [76] is illustrated in Fig. 7. The general method for
ymbolic regression was implemented in a tool called Eureqa [292] that is now only available as an online service [293].

6 We use the squared error here for simplicity, but other notions of distance are possible.
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Fig. 7. Schematic view of the symbolic regression method for discovering physical laws in [76]. Starting from observational data (1), partial derivatives
re computed numerically for all pairs of variables (2). A set of candidate symbolic functions f is derived (3), whose symbolic partial derivatives
re computed (4) and compared to the predictive ones (5). The process 3–5 is iterated until, finally, a small set of the most accurate and simple
quations is returned (6).

There are several publicly available and open-source implementations, such as the PySR [294], gplearn [295],
lyph [296] and Operon [297]. A more detailed overview of genetic algorithm-based methods and their combination
ith gradient descent can be found in Kommenda et al. [298].

eynman AI. An approach that exploits physical knowledge such as units and makes reasonable assumptions for equations
n physics is Feynman AI [102,299]. The method augments the genetic algorithm searching for expressions by enforcing
itting physical units, decomposing the problem using symmetries and checking separability. To check for symmetries, a
eural network is trained on the data to allow accessing whether the underlying function is symmetric. It is worth noting
hat a large amount of data is used here. From a set of 100 equations taken from the Feynman Lectures, the method was
ble to recover all of them whereas Eureqa only solves 71.

earch with deep reinforcement learning. A method that uses Deep Reinforcement Learning to search for a suitable solution
o the symbolic regression problem is Deep Symbolic Regression (DSR) [300]. The key idea is to treat the search for
xpressions as an exploration problem in reinforcement learning (RL). The functional expressions are represented as
sequence of tokens corresponding to a depth-first graph traversal and are generated by a recurrent neural network.
umerical constants are fitted using the BFGS optimiser. This generative network is trained on the given dataset using RL
o find a highly fitting solution. An interesting contribution is a formulation of a risk-seeking policy gradient that tries to
ptimise for the best-case scenario (a good solution can be found) rather than the typical average case. The method was
ble to solve 83% of the standard Nguyen-1 dataset.

.1.2. Sparse linear regression and neural network approach
The symbolic regression problem can also be tackled via traditional regression methods. In contrast to the search in

discrete set of functions, the search is performed in a dense set, typically represented by a real-valued parameterised
unction. So (14) is solved by choosing a large enough function class described by fw with w ∈ Rp. The optimisation is then
erformed over the space of parameter-values w. Linear regression is a special case, where the function fw(x) = w · x⊤.
What about the complexity regularisation term C(fw) in (14)? Ideally, the term should count the number of non-zero

arameters in w, expressed as |w|0 and referred to as L0 norm. However, this term jeopardises the efficient solution of
he regression problem because it is non-linear and non-differentiable. One practical alternative is to use the L1 norm
nstead, i.e. the sum of absolute values, which also leads to sparse solutions (see Fig. 8). In the case of linear regression,
his is termed LASSO regression [301].

The methods differ in the function class fw , the regularisation term and the optimisation method used.

SINDy: Sparse identification of dynamical systems. In some cases, the class of building blocks that might occur as summands
in the analytical description of the data are known. Then a rather simple but effective method can be employed that
is called sparse identification of dynamical systems, SINDy for short. It was proposed in Brunton et al. [12] to find
differential equations of dynamical systems from observations. For the general symbolic regression problem, the FFX
method by McConaghy [302] was already earlier proposing the same idea. The input data is passed through a predefined
library of base functions and interaction terms. Then the resulting high-dimensional representation is fit to the data using
sparse linear regression. All relevant terms keep a non-zero weight and constitute the final expression.

Let us unpack this in more detail for a dynamical system of n variables described by the system of ordinary differential
quations d x = g(x), where x(t) ∈ Rn. Each component of g can now be substituted by a linear combination of library
dt
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olution (red star), a sparse solution (green) is found.

unctions:
d
dt

x1 = g1(x1, x2, . . . , xn) = w11l1(x1, . . . , xn)+ · · · + w1mlm(x1, . . . , xn)

d
dt

x2 = g2(x1, x2, . . . , xn) = w21l1(x1, . . . , xn)+ · · · + w2mlm(x1, . . . , xn)
...

d
dt

xn = gn(x1, x2, . . . , xn) = wn1l1(x1, . . . , xn)+ · · · + wnmlm(x1, . . . , xn),

here l1, . . . , lm is the predefined finite library of candidate functions and wij are the scalar coefficients to be learned
ollowing our objective (14). To obtain a sparse solution, the L1 regularisation (LASSO) can be used, i.e. C(f ) = |w|1,
s described above. Alternatively, the (squared) L2 norm of the weights ∥w∥22 can be used, corresponding to classical ridge
egression that permits a closed-form solution. However, an iterative pruning of small weights must be used to obtain a
parse solution (see [303]).

Illustration of sparse identification of dynamical systems (SINDy) [12] using a synthetic dataset of the well-known Lotka–
Volterra system, as shown in Adsuara et al. [303]. The Lotka–Volterra system models the interaction between prey and its
predator in ecology and is given by the following equations:

d
dt

x1 = αx1 − βx1x2
d
dt

x2 = −γ x2 + δx1x2

with the coefficients, α and γ , being the intrinsic growth/decrease rates of x1 and x2, and β and δ are cross terms taking into
account the interaction between species. In our particular case, we will set α = 3/2, β = 1, γ = 3, and δ = 1/2. We show the
results of the identification of these parameters using SINDy in the table below for two levels of additive white Gaussian noise
of the signal-to-noise ratio of 5 (high noise level) and 40 dB (low noise level). As usual, the created data was split into train/test
data (75%, 25%), respectively. The ODE coefficients are recovered sufficiently well to achieve a high correlation coefficient R but
are generally underestimated due to the sparsity regularisation.

Learned Coefficients True
Library functions 40 dB 5 dB Coefficients

d
dt x1

d
dt x2

d
dt x1

d
dt x2

d
dt x1

d
dt x2

x1 1.3822 0 1.1404 0 1.5 0
x2 0 −2.9123 0 −2.7946 0 −3
x1x2 −0.9797 0.4849 −0.9520 0.4710 −1 0.5
x32 0 0 0 −0.0001 0 0
R 0.9999 0.8674

For fitting dynamical systems, the temporal derivatives need to be computed. Finite differences are often too sensitive
to noise such that kernel regression (aka Gaussian processes), which allow for explicit derivative computation, are
preferred [304,305]. A more recent approach is to solve noise estimation and model identification in one joint optimisation
28
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Fig. 9. Equation Learning Architecture and example equation. Left: Illustration of the EQL Architecture, reproduced from [101], a feed-forward neural
network with special activation functions (sin, multiplication etc.). Note that each unit type will occur many times. Right: Example system with four
nputs x1,2,3,4 and one output y. Training is only in the [−1, 1]4 . EQL recovers the equation and extrapolates [101].

procedure [306]. Intuitively, for every data point, the corruption by noise is estimated. Since this optimisation problem is
highly underdetermined, an additional constraint is used, namely that when integrating the estimated dynamical system
model a small error should occur. This trick separates noise from the signal and leads to an improved estimation quality.

Neural network approach: Equation learner. Enlarging the function class f is possible using neural networks. Probably the
irst work in this direction is the Equation Learner (EQL) introduced in Martius and Lampert [307] that uses a neural
etwork with algebraic base functions and a particular regularisation scheme to solve (14) and (15). The function f
s represented by a neural network, modified only to contain elementary operations that should appear in a potential
olution. Fig. 9(left) shows the architecture of the Equation Learner (EQL) in a simplified form.
The input variables are mapped with a dense layer to multiple instances of trigonometric functions, identity, multi-

lication and division, but more base functions, such as squares or exponentials, are possible. The resulting values are
gain mapped with a matrix to another layer of elementary functions, and so forth, until the last layer corresponds to the
utput (containing only division operators in the picture).
The network is trained using stochastic gradient descent (e.g. Adam) on the mean squared error loss and L1

egularisation on the weights to induce sparsity:

E(x,y)∼D∥fW (x)− y∥2 + λ|W | (16)

here fW denotes the neural network with parameters W . Note that the system needs to be differentiable for training,
uch that a pure complexity term, such as L0 regularisation that would count the number of non-zero weights, does not
ork out of the box. Although methods have been developed since then [308], the L1 regularisation in (16) is effective
ut creates an undesired trade-off between error and sparsity. Something that we also encountered in the illustrating
xample when applying SINDy. The EQL method introduces an additional regularisation phase after converging with L1
hat clamps all |Wi| < ϵ ≪ 1 to zero and optimises without regularisation. This yields a practical approach to optimising
or sparsity without trade-offs. In Kim et al. [309] an alternative to L1 with L0.5 was used.

The reader may wonder how the system is successfully trained with elementary functions such as division or square
oot. Indeed, a naive application would fail due to exploding values or gradients. In Sahoo et al. [101] and Werner et al.
310], suitable parameterisations and training steps are proposed. Choosing different λ (Eq. (16)) will create differently
parse resulting networks. Each represents a particular symbolic expression resembling the Pareto curve illustrated in
ig. 6. In Fig. 9 (right), a synthetic example system is shown. The training data is only generated in the [−1, 1]4 hypercube.
he correct equation was discovered, and perfect extrapolation is possible in this case, see Sahoo et al. [101] for details.
Instead of manually selecting a particular solution, which might be a good procedure when structural insights are to

e obtained when investigating some unknown phenomenon, one can also use several or all solutions along the Pareto
urve to estimate uncertainty about the predictions for extrapolation, as proposed in Werner et al. [311]. Fig. 10 illustrates
his approach. For each found equation, a Laplace approximation allows to approximate the uncertainty due to parameter
stimation errors and yields a Gaussian posterior. Combining these using a weight based on the validation error and the
omplexity yields the estimated density. Note how the uncertainty in extrapolation shows clearly the structure of the
iscrete set of automatically generated hypotheses.

.1.3. Learning to solve symbolic regression
All methods so far treat every symbolic regression problem in isolation — the search or optimisation algorithm was

pplied to a new dataset from scratch. We are now looking into the idea of learning to solve a particular problem quickly by
sing data from a whole class of symbolic regression instances. Generally, the idea is to approximate the inverse mapping
rom data to a suitable equation. The Dreamcoder paper by Ellis et al. [312] showed the first instantiation of this idea.
rovided with the language of algebraic expressions (arithmetic operations, variables, base functions) and a simulator to
enerate data for a particular equation instance, the method learns a probabilistic mapping from data to equation terms
29



G. Camps-Valls, A. Gerhardus, U. Ninad et al. Physics Reports 1044 (2023) 1–68

0
(
L
a
S

a
g
r

N
r
o
g
m
t
t
d

T
t
o
t

d
p
u

T
e

s
1

Fig. 10. Illustration of uncertainty estimates using a mixture of Laplace approximations of learned equations. Top row: toy example y =
.8 cos x − 0.4 + ϵ where ϵ ∼ N (0, 0.032) with just 6 datapoints. Bottom row: Atmospheric CO2 concentration at Mauna Loa Observatory [315]
concentration vs. time, both in arbitrary units). The left panels show the predictive distributions. The panel in the middle shows individual local
aplace approximations with 2σ (shaded area) for the toy data and a zoomed density for the Mauna dataset. The colour represents the weight and
ligns with the Pareto plots on the right side, showing RMSE over the complexity of each equation.
ource: Reproduced from [311].

nd a library of common equation building blocks. Given a particular instance of data, the system can relatively quickly
uess and verify suitable explaining equations. Developing the idea of pretraining further and specialising it for symbolic
egression was done by the following method.

eSymReS. The approach in Biggio et al. [104] is to use a high-capacity transformer model pretrained to solve the symbolic
egression problem. The method is called Neural Symbolic Regression that Scales (NeSymReS). The method uses a large set
f symbolic regression problems to approximate the inverse mapping from data to equations. After this pretraining phase,
iven new data, the inverse mapping can generate likely candidate equations. Intuitively, an experienced data scientist
ight solve the problem similarly: looking at the data and postulating a particular functional form that might explain it,

esting it, and potentially trying a different plausible hypothesis. Let us look closer at the method. As visualised in Fig. 11,
he core is a transformer7 architecture [314] that can generate algebraic expressions symbol-by-symbol given a set of
ata points.
The input is represented as a set of (x, y) pairs (1024 in Biggio et al. [104]), which are processed through a set-encoder.

he latter is invariant to permutations of the data points. The output of the transformer are tokens that correspond to
he typical symbols of input variables, base functions, operators and constant placeholders, which resemble the skeleton
f the predicted function. Importantly, the transformer does not have to guess the right constants, just their location in
he expression, as these constant placeholders are fit to the data using non-linear optimisation (here BFGS).

Trained on millions of synthetically generated pairs of random expressions with corresponding data, the transformer
oes a remarkable job guessing likely equations. Importantly, the prediction is not deterministic but allows sampling of
ossible functions. Thus, new potential solutions can be generated and validated when new data is presented at test time
ntil a sufficiently good fit is found or the Pareto.
Fig. 12 shows the accuracy of different SR methods for unseen equations from the Feynman and Nguyen benchmarks.

he performance is presented in dependence on wall-clock time. NeSymReS is remarkably fast at finding a well-fitting
xpression for the data.
As a downside, the method was only shown for three input variables, and it remains to be seen how much it can be

caled in this respect. Also, the dataset used to guess an equation at test time cannot be big (currently in the order of
000 data points) because the set transformer encoder cannot yet handle larger sets well.

7 The transformer architecture is the basic building block of many large-scale machine learning systems, such as GPT-3 [313].
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ata.
ource: Reproduced from [104].

Fig. 12. Performance of NeSymReS, DSR, classical SR (using gplearn [295]), and Gaussian processes on the AI Feynman and Nguyen datasets (equations
unseen during training).
Source: Reproduced from [104].

3.1.4. Comparison
As there are quite a number of methods, we aim to discuss their differences, strengths and weaknesses by comparing

them along a set of axes. We start with using domain knowledge, as we seldom face a completely uninformed setting in
physics. We continue with aspects of the embedding, scaling, speed and usability, summarised in Table 4.

Using domain knowledge. A common form of domain knowledge is the base functions and their approximate frequency
of occurrence in describing the system under consideration. In standard symbolic regression with genetic algorithms, the
number and kind of base functions are very flexible, and each term can have its individual penalty in terms of complexity.
More specific domain knowledge, such as monotonicity, function image constraints and derivative constraints, can also be
considered, as presented in Kronberger et al. [316]. Another recent work is presented in Cornelio et al. [317] that allows
to incorporate axiomatic constraints.

In FFX/SINDy, the library of functions is the prime way to specify domain knowledge. Relative preferences could be
implemented by different regularisation strengths.

For the EQL framework, the choice of base functions is a bit more complicated, as the systems need to remain
optimisable with gradient descent. In Werner et al. [310], a suitable relaxation for functions with divergences (in function
value or derivative) is proposed, and a way to specify preferences among base functions is analysed. The control of the
relative frequency of used terms is possible but less direct than in genetic algorithm-based methods. In NeSymReS, domain
knowledge can be embedded by selecting/generating the training set with appropriate synthetic problems, although this
was not explicitly demonstrated.

Scaling. Most SR methods are for small-scale problems with a few hundred to a few thousand data points and
low-dimensional problems, i.e. 1–10 input and output variables. Classical search methods scale unfavourably with
dimensionality as the search space grows exponentially. That is why most SR methods are good at finding relatively
small and compact equations for low-dimensional systems but fail for both high-dimensional systems or those where
larger equations are the most compact solution.

FFX/SINDy can handle large output dimensions easily, using some form of ridge regression. However, it also suffers
from large input dimensions as the library bank becomes exponentially large unless a factorisation or other simplifying
structure is known, for instance, a strong locality assumption in PDEs.
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Table 4
Comparison of symbolic regression methods. See Section 3.1.4 for more details.

Embeddable Scaling Speed Restriction Domain knowledge

Genetic Programming [76] ✗ ✗ Slow For small systems Base-functions, complexity
of terms

AI Feynman [102] ✗ ✗ Slow For physical systems in
canonical form

Physic: units, symmetries

DSR [300] ✗ ✗ Medium Small input dim Training domain
FFX [302], SINDy [12] ✓ ✓a Blazing Needs known library Training domain

EQL [101] ✓ ✓ Slow Base functions limited,
sometimes less concise

Base-functions, complexities

NeSymReS [104] ✗ ✗ Fast Small input dim Training set

a It scales well to large output sizes; for high-dimensional input strong structural assumptions are required.

NeSymReS is also limited to several variables and small datasets. Although, the limitation of the dataset size can be
lifted by sampling a smaller subset of data points for guessing the skeletons and using all data for the parameter tuning
with BFGS.

EQL is the only scalable method, as gradient descent works on all dimensions simultaneously, and machine learning
methods are developed to scale. A larger initial neural network should be used for larger systems, but no specific
adaptations are required.

Differentiability and embeddability. An interesting feature is whether the SR system can be used as a module in a larger
computational pipeline. For instance, if observations are available as images and the causal variables have to be first
extracted from the images before they can be used for a concise SR prediction module. An example using SINDy inside
an autoencoder architecture [94] learns the coordinate frame and dynamics equations at the same time, as detailed in
Section 3.2.4 below. EQL is conceptually easy to embed into larger architectures, such as deep networks, as it is end-to-end
differentiable. An example is discovering PDEs [318], or learning an energy function given observations of the dynamics
in the context of density functional theory [319], discussed in more detail in Section 4.5. The other methods are more
difficult to embed.

Speed. As shown in Fig. 12, symbolic regression methods are best compared in performance per compute-time, because
search methods can, in principle, find the global optimum given enough time (although this time might be longer than
the age of the universe), so just the ‘‘final’’ performance is difficult to measure. SINDy is not in this comparison because
it requires knowledge of the base functions. However, it would be the fastest method, followed by NeSymReS, DSR and
classic GPs. EQL is likely the slowest method on small systems because it requires a long training time. However, the time
does not significantly increase with system size and amount of data.

When to use which method? For systems where we have a good idea about the occurring modules of the functional form,
FFX and SINDy are probably the method of choice. They are simple and effective. For dynamical systems SINDy is the most
specialised method. The other SR methods are good if the functional building blocks are unknown or nested structures are
expected. Genetic Programming based methods generally shine on small problem settings. Modern implementations can
also fit constants, but they result is sometimes complex nested structures. DSR and NeSymReS are faster than standard SR
methods and can yield potentially less complex equations. However, less software is built for them, and they are less easy
to use. For high-dimensional data or when high fitting accuracy is required, EQL might be the right choice. Also, when SR
should be embedded, only FFX, SINDy and EQL are practically useable.

3.2. Implicit equation discovery with dimensionality reduction and transfer operators

This section reviews state-of-the-art methods for recovering implicit feature representations of systems from data.
We will review connections among methods and emphasise the role and examples in the broad discipline of physics.
Unlike in the previous section, an explicit equation is not discovered but rather an operator that encapsulates the system’s
characteristics (typically spatio-temporal dynamics). The field is tightly related to dimensionality reduction and feature
extraction in machine learning and signal processing [320], but also to transfer operators in functional analysis [321].

3.2.1. Reduced-order models
In many domains, the goal is to study system dynamics frommodel simulations. In this case, equations are encapsulated

in the model itself, but large-scale, high-fidelity nonlinear models can be challenging to simulate and require significant
computational power. In such cases, reduced order models (ROMs) can simplify analysis and control design by trading off
model accuracy for computational complexity reduction. ROM can combine complex component-level simulation models
into system-level simulations used for control analysis and design.
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Two main classes of techniques for building ROMs: model-based and data-driven. Model-based methods rely on a
mathematical or physical understanding of the underlying model and are designed for specific PDE-based models. In
contrast, data-driven methods use input–output data from the original high-fidelity first-principles model to construct a
ROM that accurately represents the underlying system. Data-driven ROMs can be either static or dynamic models. Static
ROMs can be developed using techniques such as curve fitting and lookup tables (LUT), while dynamic ROMs can be
developed using deep learning techniques such as LSTM, feedforward neural nets, and neural ODEs. The obtained ROM
ideally contains the essential physical mechanisms of the original system while exhibiting simpler dynamics that can
enhance interpretability. In addition to the simpler physics, the ROM would be much cheaper from the computational
point of view than the numerical integration of the governing equations, which can help obtain more efficient control
and optimisation techniques.

Developing a ROM typically requires two steps. The first step is to find a set of coordinates where the original dynamics
can be expressed in a compact form. This is typically done in terms of modes, associated with coherent features in the
original system [322,323]. In the second step, it is necessary to find a set of differential equations governing the temporal
evolution of the amplitudes of the aforementioned modes. These equations, which constitute a dynamical system, enable
shedding light on the physics of the (reduced) phenomenon under study. A widely-used approach to perform the modal
decomposition is the so-called proper-orthogonal decomposition (POD) [324], which is also known as principal component
analysis (PCA) in statistics and empirical orthogonal function (EOF) analysis in meteorology [320], and is closely connected
with the singular-value decomposition (SVD) [93].

Proper-orthogonal decomposition (POC), aka PCA or EOF [320,324] decomposes a dataset or a high-dimensional (spatio-
temporal) field into a set of orthogonal basis functions called modes or eigenfunctions, which capture the dominant features
of the data. The first few modes explain most of the variability in the data, while the later modes explain smaller and smaller
amounts of variability. By truncating the number of modes, one can obtain a low-dimensional representation of the data that
preserves the essential features of the original system.

Given a set of data snapshots X = [x1, x2, . . . , xn] ∈ Rm×n, where m is the dimension of the data and n is the number
of snapshots, we seek to decompose the data into a set of r orthogonal modes {ui}

r
i=1, such that X ≈ UΣV⊤, where

U = [u1,u2, . . . ,ur ] ∈ Rm×r , Σ ∈ Rr×r is a diagonal matrix containing the singular values, and V⊤ ∈ Rr×n is the matrix
of temporal coefficients. The modes {ui}

r
i=1 can be computed by performing a singular value decomposition (SVD) of the data

matrix X = UΣV⊤ =
∑r

i=1 σiuiv⊤i where σi is the ith singular value, and vi is the ith right singular vector. The modes are then
given by ui =

1
√
σi
Xvi.

The POD/PCA framework enables decomposing spatio-temporal data (e.g. flow velocities, weather or climate variables
hich depend on the spatial coordinates and time) into a set of spatial modes (which only depend on the spatial
oordinates), multiplied by their temporal coefficients (which define their change of amplitude with time). POD/PCA
nsures that components are orthogonal and optimality with respect to the variance explained by a reduced number
f modes, cf. Fig. 13 for an example of PCA on a toy spatio-temporal data flow. Other alternative multivariate methods,
ike partial least squares (PLS) or canonical correlation analysis (CCA) seek projections that maximise covariance or
orrelation, respectively [320]. Still, all these projection methods are linear and thus cannot cope with nonlinear spatio-
emporal feature relations and complex dynamics. This can be addressed with kernel machines [320]. Oblique and
onlinear transformations can also be learned by embedding Varimax in Reproducing Kernel Hilbert Spaces (RKHS)
xplicitly [119,325]. Other ways to obtain non-linear transformations from observation space to ROM space, e.g. using
eural networks, will be discussed below.

.2.2. Transfer operators for learning nonlinear dynamics
Transfer operators are related to the abovementioned methods and allow the characterisation and modelling of

omplex dynamic systems. These operators’ eigenfunctions can decompose a system given by an ergodic Markov process
nto fast and slow dynamics and identify modes of the stationary measure called metastable sets.

The Koopman operator is a linear operator that describes the dynamics of a system by lifting the state variables into
n infinite-dimensional Hilbert space. Thus, it enables us to effectively linearise complex temporal trajectories and hence
s a compelling approach in dynamical systems research [321]. Its application is expanding in both theoretical [321,326],
nd practical domains from molecular dynamics and fluid dynamics, atmospheric sciences, and control theory [327–329].
The advantages of the Koopman operator are numerous. First, it is a powerful tool for analysing and predicting the

ehaviour of a system over time. By lifting the state variables into a higher dimensional space, the Koopman operator
an identify patterns in a system’s behaviour that may otherwise be difficult to detect. This can be especially useful for
ncovering hidden dynamical structures in chaotic systems.
Second, the Koopman operator allows us to develop data-driven models of dynamical systems. Using the operator’s

igenfunctions as basis functions, it is possible to develop models of dynamical systems operating on these summarised
oordinates, without solving or even understanding the underlying equations of motion. This makes the Koopman operator
n attractive tool for model-based control and optimisation. Third, the Koopman operator is useful to discern key
33
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roperties of highly nonlinear dynamical systems. In short, with the expansion of original state variables to infinite
imensions, the operator can uncover subtle nonlinear behaviour in a system that would otherwise be difficult or
mpossible to detect [321].

Koopman operator [321] The Koopman operator is a linear operator that describes the evolution of an observable function of
a dynamical system. Let M be a manifold of dimension n and f : M → R be a real-valued function. The Koopman operator,
denoted by K, is defined as an infinite-dimensional linear operator that acts on the space of observable functions f such that
for any f ∈ L2(M),

Kf (x) = f (T (x)),
where T :M→M is the evolution operator that maps each point x ∈M to its next iterate in time. Now, let f :M→ R be
a bounded, measurable observable and K be the Koopman operator associated with a dynamical system. Then, there exists a
sequence of eigenfunctions ψj :M→ C and a corresponding sequence of eigenvalues λj ∈ C such that

Kψj(x) = λjψj(x).

The Koopman operator preserves the linear structure of the space of observables, provides a linear representation of nonlinear
dynamics, and its eigenfunctions provide a useful basis for approximating dynamical systems.

There are, however, some drawbacks associated with the Koopman operator. First, it is intrinsically an infinite-
imensional operator, and although there are efficient finite-dimensional approximations available, the accurate compu-
ation of their eigenvalues and eigenfunctions can be computationally expensive [96]. This can be a problem for real-time
pplications, such as model-based control [330]. Second, related to this drawback, the operator’s eigenfunctions are often
ifficult to interpret, hampering the capacity of the learned representations to explain the underlying system’s dynamics.
inally, the Koopman operator assumes that a locally-linear behaviour can represent nonlinearities sufficiently accurately.
hus, the Koopman operator is an important theoretical and applied research tool for understanding and predicting the
ehaviour of complex dynamical systems. Its data-driven approach to model-based control and optimisation has opened
p new possibilities for real-time applications [330]. Moreover, its ability to uncover subtle nonlinear behaviour in chaotic
ystems has made it invaluable for studying chaotic dynamical systems [331].
More specifically, given a space in which the dynamics is linear, a successful approach to approximate transfer

perators (such as the Koopman operator) from the data is called dynamic-mode decomposition (DMD) [327]. It is also
ossible to obtain ROMs using DMD [327], which is also based on concepts from linear algebra and assumes that the
ystem’s state can be advanced in time via a linear operator A. While the POD modes are orthogonal in space, the DMD
nes are orthogonal in time, and each mode is associated with a particular frequency and a growth rate. Therefore, DMD
ay help to identify temporal patterns in the data more clearly than POD. In contrast, POD may lead to a more compact

ow-order representation of the original system due to its optimality property. See an illustrative example in Fig. 13.

Dynamic-mode decomposition (DMD) [327] is a technique used to approximate the normal modes and eigenvalues of a linear
system. Additionally, these modes can be associated with a damped or driven sinusoidal behaviour in time. DMD is useful for
identifying a system’s frequency and decay/growth rate. Let us define a dynamical process formulated as dx

dt = f (x, t, µ), where
x defines a measurement, t is a time, µ is a parametric dependence, and f indicates an unspecified system but from which we
obtain many data. Therefore, the complex dynamical system f can be approximated as follows dx

dt ≈ Ax, where x ∈ Rn, n ≫ 1
and A defines a linear dynamical system. Then its general solution is the ‘exponential solution’ defined as x = veλt , where v
and λ are eigenvectors and eigenvalues of the linear system A. The problem of finding the eigenvectors v and the eigenvalues
λ is a eigenvalue problem defined as λv = Av.

Yet, we are interested in obtaining A, not its eigendecomposition. This is what the so-called ‘exact DMD’ does. DMD uses
observations/measurements xj = x(tj), defined at a time point j to construct two matrices: the first concatenating the data from
the first snapshot to (m − 1)th snapshot, and the second with the shifted-by-1-time-step samples, X and Y, respectively. The
goal is thus building a linear dynamical system A fitted with dx

dt = Ax, and thus learn the linear dynamical system A that takes
the data x from current state (j − 1) to future state (j), that is Y = AX. The linear dynamical system A can be extracted using
a pseudo-inverse X† of X, that is A = YX†. Intuitively, the linear dynamical system A performs a least-square fitting from the
current state X to the future state Y.

Over the last decades, different numerical methods have been introduced: Ulam’s method [332], extended dynamic-
ode decomposition (EDMD) [333–335], and the variational approach of conformation dynamics (VAC) [336,337]. The
dvantage of purely data-driven methods is that they can be applied to simulation and observational data. Hence,
nformation about the underlying system itself is not required. An overview and comparison of such methods can be found
n [329]. Applications and variants of these methods are also described in [338–340], while kernel-based reformulations
f the methods above have been proposed before in [334,341]. Note that the framework of higher-order dynamic-mode
ecomposition (HODMD) [342] enables relaxing the linear assumption by including several temporal snapshots to build
he operator by exploiting Takens’ delay-embedding theorem [343]. The HODMD approach requires additional hyper-
arameter tuning, but it has led to very insightful results, for instance, in the context of complex turbulent flows, where
his method has enabled identifying the coherent structures responsible for the concentration of pollutants in cities [344].
nother relevant application of HODMD includes cardiovascular flows [345].
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Fig. 13. Comparison between DMD and PCA with synthetic spatio-temporal data. The signal under analysis x(s, t) (c) is the sum of two generative
signals (a,b): x1(s) is a Gaussian that decays exponentially, and x2(s, t) is a square that oscillates at a lower frequency. The projections onto the two
op components of PCA (d) and DMD (e) show that DMD extracts cleaner spatial coherence patterns from the data.

.2.3. Dynamic modes in neural-network latent spaces
Despite the interesting properties of POD and DMD, their inherent linearity typically leads to the requirement of very

arge numbers of modes to reconstruct most of the variance of the original signal, for example, in three-dimensional
urbulent flows [346]. Neural networks, especially autoencoders (AEs), have been proposed to obtain a reduced-order
onlinear representation of the original data. AEs exploit non-linear activation functions to produce significantly more
ompact representations in the latent space than those with, e.g. POD [347]. Fig. 14[a–b] shows the use of AEs for learning
dynamic) feature representations.

AEs have been used in fluid mechanics to obtain compact modal decompositions of the flow around a two-dimensional
ylinder [348] and in more complex turbulent flows, e.g. the flow in a simplified urban environment [349]. Interestingly,
hen restricting neural networks to linear activation functions, one recovers the POD modes, as shown by Milano and
oumoutsakos [350] with a multilayer perceptron (MLP) in turbulent channel flow. Shallow NNs have been used for flow
econstruction, in this case from sparse measurements, as illustrated by Erichson et al. [351] for several flow cases. A
ore general illustration of the potential of AEs based on convolutional neural networks (CNNs) was presented by Lee
nd Carlberg [352], and an application to spectral submanifolds was developed by Cenedese et al. [353]. The reader is
eferred to Refs. [354,355] for a survey of classical methods applicable to linear subspaces.

Despite the superior compression performance of AEs compared with POD, the former does not have two very
nteresting properties of the latter, namely the optimality and orthogonality of the resulting modes. These are important
roperties due to their connection with interpretable and parsimonious ROMs. Regarding optimality, Fukami et al. [356]
roposed an interesting approach based on hierarchical autoencoders (HAEs). They first trained a CNN-based AE fixing the
imension of the latent space to just one, obtaining one latent vector. Then, they trained another CNN-AE with a latent
imension of two and fixed the first latent variable to the one obtained in the previous NN, thus obtaining a second
atent vector. Through this recursive strategy, they obtained a sequence of latent vectors exhibiting progressively less
ontribution to the reconstruction of the original signal, allowing them to establish a ranking in the resulting modes.
his approach was tested in the flow around a two-dimensional cylinder, although it is important to note that the
esulting modes were not orthogonal. This was addressed by Eivazi et al. [349], who used β-variational autoencoders
β-VAEs), which enable introducing stochasticity in the latent space to impose orthogonality in the resulting AE modes,
phenomenon that was explained in Rolinek et al. [357] among a connection of β-VAEs to PCA. Also in the case of the

β-VAEs, the modes can also be ranked in terms of their contribution to the reconstruction.

3.2.4. Equation discovery in latent representations
Perhaps the biggest challenge in data-driven model discovery is balancing model efficiency with descriptive capabili-

ties. Parsimonious models with the fewest terms required to capture essential interactions promote interpretability and
generalisability. However, obtaining parsimonious models is linked to the coordinate system in which the dynamics are
measured. The previous methods based on dimensionality reduction, e.g. ROM, DMD or AE, extract expressive components
without simultaneously discovering coordinates. In [94], AEs were trained for data reconstruction and to recover a
parsimonious dynamical system model through sparse regression using SINDy (see Section 3.1.2). See Fig. 14[c]. The joint
goal of discovering models and coordinates is critical for understanding many modern systems. Using SINDy as an explicit
equation discovery regulariser in the latent space balances simplifying coordinate transformations and nonlinear dynamics
to identify coordinate transformations where only a few nonlinear terms are present.
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Fig. 14. Approximating Koopman operator with explicit nonlinear mappings using autoencoders. (a) An autoencoder neural network learns a mapping
Φ compressed latent representation y from input data x by minimising the reconstruction error L. (b) One can incorporate the Koopman linear
operator K operating in the latent representation yt , which can then be used for prediction xt+1 from the transformed yt+1 [326]. (c) Those
representations are not necessarily physically consistent. This can be addressed by enforcing equation dictionaries using SINDy in the loss for the
simultaneous discovery of coordinates and parsimonious dynamics [94]. The loss now accounts for the reconstruction of the input data, as in a
regular autoencoder, and the temporal dynamics (gradients ∇x,∇y) of x and y projected onto SINDy bases.

3.2.5. Discovering fundamental variables
Despite advances in equation discovery (either through implicit or explicit representations), the main core problem

is identifying state variables. The discovery typically refers to the identification of the governing equations, not the
identification of the physical forces or variables. The vast majority of data-driven models of discovery rely, however,
on pre-existing knowledge of the state variables, e.g., the position and velocity of a rigid body object. This relies on
deep domain knowledge and strong assumptions. In addition, such assumptions cannot work properly for new physical
systems or when those state variables cannot be measured. The work [13] proposed a principle for determining the
number and identity of state variables in a system from high-dimensional data and demonstrated high effectiveness using
video recordings of physical systems. The algorithm discovered the intrinsic dimension of the observed dynamics and
could identify candidate sets of state variables without prior knowledge of the underlying physics. Alternatively, other
studies sought to identify the fundamental state variables via manifold learning in ambient RKHS (termed Diffusion maps,
.g., [358,359], see also Section 4.1.2).
In short, the field of variable discovery is filled with many opportunities in the physical, biological and chemical

ciences [105,106,358], as well as many challenges [13]. Finally, and interestingly, we want to emphasise that variable
iscovery is intimately related to revealing latent confounders in the field of causal inference [107–109].

.3. Perspectives

Let us indulge ourselves with a brief overview of the main challenges (both conceptual and technical) and the
pportunities for future research in the field of equation discovery for the physical sciences.

.3.1. Challenges

Fig. 15: On the quest for the optimal model in the
sparsity-extrapolation-generalisation space.

The field of equation discovery from data is very prolific
nd is situated at the intersection of many communities:
tatistics, machine learning, computational fluid dynamics,
ayesian inference, dynamical systems and control theory,
unctional analysis and causal inference. The field has oc-
upied scientists for centuries at all levels. The quest for
ptimal and automated solutions has traditionally consid-
red moving in one or several subspaces in the sparsity-
xtrapolation-generalisation space, i.e., models should be
imple, generalisable/robust, and capable of extrapolating
utside the sample space (Fig. 15). These are very ambitious
oals, implying both theoretical and practical challenges.

heoretical challenges. From a more theoretical perspective,
oth the identifiability of the system’s equations [360,361]
nd the role (or preference) for sparsity (simplicity) have been questioned [362,363]. In addition, there is a long-standing
ebate on the evaluation of the obtained solution, where many criteria can be adopted. Is it only about invariances and
obustness in space and time? Is Nature always simple and compositional, such that compactness and sparsity rule in
atural systems? The issue of model’s (i.e. hypotheses) intercomparison and evaluation also speaks to the more elusive
uestion of how to reconcile solutions offered by different equation discovery methods.
Another important theoretical challenge is related to the fact that, very often, one (1) assumes that all involved

tate variables are given/observed, which resembles the sufficiency assumption in causal inference, and (2) selects
subset of representative states, assumes a particular basis to express the solution, or can operate on a manifold
36
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ubspace [84,93,94,364]. Both are strong assumptions that challenge the process of discovering equations and raise many
uestions. How do we choose the right variables to include in the equation discovery method? How much does the
olution change when a variable is omitted or added? Here, identifiability issues and latent confounders play a substantial
ole. And foremost, what if we cannot measure the underlying state variables? Can we identify them automatically?
everal methods have arguably proposed to discover the latent variables [13], and other efforts exploit the link between
KHS techniques and a plausible master equation underlying the spatiotemporal evolution of the data probability density
unction [365] to automatically learn a set of fundamental coordinates of the system, cf. Section 3.2.5. The inferred
ubspace has shown effectiveness in identifying the dynamics of (partial) differential equations [358,359], see examples in
ection 4.1.2. However, like other explicit methods discussed in this section, it requires prior guidelines on the differential
quation to model and incorporates a range of heuristics during its processing pipeline [358].

ractical challenges. Important practical challenges are related to the model development and data characteristics: (1) high
imensionality, (2) nonlinear relationships and (3) risk of overfitting. In many cases, the number of variables and parameters
an be very large, making it difficult to find the most relevant features and relationships. This is the scenario where non-
dentifiability arises. Another challenge is that real-world systems often exhibit highly nonlinear relationships between
nput and output variables. This makes finding a good representation of the underlying dynamics difficult, and the search
pace for equations can become very large. While several nonlinear methods that capture complex dynamics exist (kernels,
eural networks), performance evaluation and hyperparameter tuning are still important challenges. Finally, symbolic
egression approaches can also suffer from overfitting, where the model fits the training data well but performs poorly
n new data, which speaks to the trade-off between the model’s accuracy and complexity.
When working with spatiotemporal data, it is relatively unclear how to incorporate information about time-lagged

elations and interventional data. Both the explicit and the implicit approximations show particular challenges, though:
n the one hand, symbolic regression techniques (such as SINDy) face significant problems in defining the basis functions,
orking in high-dimensional problems, and the impact of (even a limited) amount of noise. Other methods, like those
ased on AI Feynman, even if they incorporate sensible criteria to guide the equation discovery (like compositionally,
eversibility or physical unit consistency), almost predict completely different equations when changing constants in the
rue equation [366]. On the other hand, implicit methods (like DMD or Koopman operators) do not provide an explicit
quation but a latent feature representation to explain system dynamics. These methods struggle with nonstationarities,
onlinearities, and gaps noise, which remain unresolved problems in the literature [367]. Note that similar challenges to
hose in causal discovery remain here, cf. Section 2.2. Besides, DMD methods fail to generalise outside the training data
nd violate basic physical laws. To alleviate this, integrating domain knowledge (such as symmetries, invariances and
onservation laws) in DMD has been recently introduced as an effective, robust approach [368].

.3.2. Opportunities
While symbolic regression presents challenges, it offers exciting research opportunities for the physical sciences. Three

ain opportunities can be identified: (1) model interpretability, (2) model compression and evaluation, and (3) model
election. Equation discovery is a step forward in the system’s understanding. The field leverages fully interpretable
odels, and unlike causal models, equation discovery (symbolic regression) models are directly applicable predictive
odels. The discovered equations from data can provide insights into the underlying dynamics of a system, thus helping

esearchers better understand how different factors interact and contribute to a particular outcome. Even with implicit
atent representations, interpretability can be accomplished with interventional analysis. Another interesting opportunity
s model compression, as symbolic regression models can also be used to compress large datasets into simple equations
hat capture the system’s essential features; this can make it easier to analyse and visualise the data and make it more
omputationally efficient to work with. Another practical opportunity of symbolic regression models is that they offer
reduced set of possible solutions typically ranked in amenable Pareto fronts, which of course, trigger difficulties in
hoosing the right model but also fruitful scientific discussions about the plausibility of identified relations. This can save
esearchers time and effort and help identify unexpected patterns and relationships in the data.

odel interpretability and intervention analysis. The discovered explicit models are interpretable in nature. However,
hen complexity cannot be traded for accuracy or whenever an implicit feature representation is learned, intervention
or sensitivity) analysis offers opportunities for interpretability. For example, one can (1) ignore or simplify the problem
y performing small perturbations away from real-world dynamics, which might help identify the proper relationship
etween variables; (2) intervene on exogenous variables (e.g. wind or solar irradiation, mixing coefficients, initial conditions
n climate sciences, or targeted, direct brain stimulation in neurosciences) which is equivalent to collecting more data;
3) create a library of trajectories under different conditions and select those which match the desired intervention; and
4) intervene in the learned latent space and decode the intervention back to input space, thus allowing us to generate
nterventions that follow the system’s natural trajectories. Further analysis methods, e.g. for studying interventions of
he learned ODE, might be fruitful, as they can access long-term dynamical properties, such as how distortion in the
igenvalues affects the system’s stability as the phase space changes.
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odel compression and evaluation. Scientists frequently use metrics to evaluate new ideas or distinguish between
ompeting hypotheses. As we have seen before, a governing equation should be simple but not simpler, accurate for
rediction, robust under distortions and changes, and invariant in space and time. Equation discovery offers a direct way to
earn plausible models and an indirect way to contrast and evaluate derived models. For this, one typically assesses (1) the
predictive accuracy when answering how well the (simplest) hypothesis explains the data; (2) the model’s invariance under
distributional shift to account for the causal mechanisms; and (3) the robustness under interventions to study how the
proposed process (or descriptive equation –representation) is consistent with interventions on the model dynamics, such
as deactivation of components or targeted modification of exogenous variables. The latter is the rarest form of validation
due to its high computational cost and difficulty in experimental design.

Model selection. Enforcing sparsity in model selection can lead to unrealistically too simple models. That is why methods
that can provide solutions along the Pareto line (Fig. 6) are needed to capture complex relationships and offer subsets
of plausible model solutions. Alternative regularisation schemes will likely be important alongside profound estimates of
uncertainty and extrapolation indicators.

4. Case studies in the physical sciences

This section gives concrete examples of applying different data-driven causal and equation discovery in important
fields of the physical sciences: neuroscience, Earth and climate sciences, and fluid and mechanical dynamics, cf. Table 5.

Table 5
Case studies presented and the main methods used in this section.

Neuroscience Earth & climate Fluid dynamics

Causal discovery Causal connectivity
(DCM, GC, TE, SCM)

Carbon-water interactions
Climate model comparison
(CCM, PCMCI)

–

Equation discovery Learning trajectories
(kFDA, GP, Variational Bayes
RNN, Diffusion Maps)

Ocean Mesoscale closures
(RVM, DMD, SINDy)

Turbulence understanding
Vortex shedding
(SINDy, Genetic Programming)

4.1. Neuroscientific applications of physics-based machine learning

4.1.1. Overview of parsimonious models for neural population dynamics
Neuroscientific modelling falls within the remit of the field known as computational or theoretical neuroscience, which

tudies the transmission of information in the nervous system at multiple spatiotemporal scales (ranging from neuronal to
hole-brain levels) in relation to perception, cognition, and behaviour (e.g., [369,370]). Thus, an ongoing challenge in com-
utational neuroscience is to link biophysically detailed models operating at microscopic levels with meso/macroscopic
heories of cortical processing [371]. This enterprise is often addressed by deducting low-dimensional systems of partial
ifferential equations or maps describing coarse-grained variables derived from collective neural responses. Such different
eurobiologically plausible simplifications are commonly termed ensemble, population, neural-mass, or simply firing-rate
odels (see, for instance, [372,373]).
These synthesis efforts are intimately connected with empirically discovering a reduced dynamical system generating

he observed neuronal activity. However, neurocomputational modelling traditionally focused on analytical, deductive
pproaches mapping realistic cortical networks to tissue-level descriptions, as opposed to data-driven model discovery,

reviewed in Section 3. Thus, ensemble models are typically principles-based, often hinged on assumptions about
dynamical interactions arising within homogeneous pools of neurons (e.g., [374–377]).

Early neural ensemble models stemmed from applying statistical mechanical principles to the interaction of homo-
geneous pools of (excitatory and inhibitory) populations [378,379]. Later, physics formalisms like the Fokker–Planck
approach for describing the spatiotemporal evolution of the probability distribution of neuronal activity enabled theoreti-
cal neuroscientists to take a more holistic approach to identify mean-field approximations of networks of spiking neurons
(e.g., [369,373,380]). These and other nonlinear dynamical systems tools [381] provided closed-from, exact solutions
for the collective behaviour of neural populations [375,382,383] capable of an extensive dynamical repertoire, although
strongly dependent on universal theoretical assumptions, given their deductive nature (see Section 1). Alternatively, a
Laplacian assumption on this probability distribution resulted in neural mass descriptions [205], recently proposed as
building blocks for whole-brain models with translational applications [384].

Overall, these chiefly deductive approaches rendered compact models of differential equations based on a priori
ssumptions about neural and synaptic variables, fostering the interpretability of high-complex neuronal networks. By
ontrast, inferential approaches in neuroscience have been typically utilised to empirically identify neural dynamics
nderlying cognition and behaviour, as discussed next.
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.1.2. Empirical reconstruction of neuronal trajectories
There is an increasing focus on applying classic and deep machine learning approaches to reconstruct attracting

nd transient dynamics of cerebral cortex responses [385]. A neural trajectory T (n × d) is often defined as the
equence of n neural response vectors x(t) embedded in a d-dimensional state–space (the ambient space), spanned
by neural ensemble activity or proxies thereof (e.g., firing-rates, electromagnetic potentials), their lags and nonlinear
transformations [385–387].

Traditionally, standard dimensionality reduction techniques (e.g., PCA, Multi-dimensional Scaling, Discriminant analysis
etc., see Section 3.2) were directly applied for the visualisation of high-dimensional neural trajectories, showcasing
coarse-grained aspects of firing-rate dynamics concerning, for example, cognitive decisions or motor functions [388,389].
More recently, Gaussian processes provided a flexible approach to derive a low-dimensional manifold representing the
dynamical systems generating the observed activity. They just require a reasonable hypothesis on temporal correla-
tions between observations (the prior covariance function [215]). For instance, Gaussian process-based factor analysis
(GPFA) [390], and other latent-variable methods [391], provide such low-dimensional subspace while simultaneously
approximating the probability of spiking — without the compelling need for probability density estimation [390,392].
These and related approaches can identify latent neural trajectory manifolds in prefrontal and motor cortices underlying
decision-making [391,393,394]. Specifically, recent GPFA variants were able to discern between competing models for the
contribution of upstream areas to recurrent dynamics supporting decision-making in the monkey prefrontal cortex [386].

Covariance (kernel) function methods can also recreate salient facets of cortical dynamics like attracting sets. To
this end, they leverage delay-embedding techniques in RKHS spanned by neuronal correlations and their temporal
structure [387,395–397] for identifying compact manifolds mapping animal’s choice with attracting sets of ensemble tra-
jectories [396,397]. Fig. 16 presents an illustrative example of these RKHS techniques for recreating neuronal trajectories
underlying the effect of dopamine at the circuit level. This approach facilitated the evaluation of mechanistic theories
of dopamine modulation during decision-making, which was challenging given the limitations of direct experimental
manipulations [396]. The figure shows the flow field of trajectories derived from the activity of neuronal constellations
in the rodent anterior cingulate cortex. Interestingly, the dynamic landscape depicted during working memory tasks
in an optimal RHKS can be approximately described as transients connecting multiple attracting sets mapping spatial
choices (Fig. 16a). This robust multi-stable scenario is completely disrupted by high doses of amphetamine (a well-known
trigger of dopamine release, Fig. 16b), while it is enhanced by low doses (see [396]), in line with long-standing theoretical
predictions of biophysical models [398].

Further facets of brain dynamics, such as chaotic attractors, have been recently addressed with recurrent, piecewise-
linear architectures, amenable to optimisation via back-propagation variants or Bayesian variational inference [399,400].
In these approaches, tractability is promoted by leveraging units’ linearisation for approximating trajectory inference in
a parsimonious, transparent fashion. Empowered by these characteristics, such linearised recurrent networks could infer
pathological whole-brain dynamics from functional magnetic resonance imaging (fMRI) recordings [401]. Moreover, recent
developments of these methods embody biophysically-inspired computations such as dendritic processing, fostering their
reconstruction capabilities of nonlinear dynamical systems [400].

More broadly, classic and deep architectures can facilitate the Bayesian inference of the optimal range of biophysically
realistic model parameters. This is a challenging task given the potentially high sensitivity of realistic networks to different
parametrisations [402]. Along these lines, approximate Bayesian computation (ABC) has been combined with connec-
tionist approaches to identify parameters in models operating at multiple spatial scales, ranging from microscopic-level
Hodgkin–Huxley-type single neurons [403] to macroscopic, cognitive-level decision-making models [404].

For instance, Sequential Neural Posterior Estimation (an ABC method) alternates between deep learners and variational
Bayes approaches for parameter approximation. First, a standard (non-biophysical plausible) classifier is used to constrain
the range of initial parameters θ generated from the prior p(θ ) by predicting their suitability. Subsequently, a deep
learner operating on multivariate data x and parameters sampled from such constrained prior p̂(θ ) estimates the
likelihood p̂(x|θ ), enabling a progressively more refined Bayesian computation of the posterior over neuronal and synaptic
parameters p(θ |x) [405]. These approaches were able, e.g., to discern between neuronal model configurations, essentially
indistinguishable in observed activity, the ones metabolically optimal in the pyloric network in crustacean [406]; or to
infer reaction times and choices in classic (drift–diffusion-type), descriptive models of decision-making [404].

Alternatively, neural trajectory reconstruction of Hodgkin–Huxley ensembles has been recently tackled with nonlinear
manifold learning in RKHS [358,359]. These methods, like common dimensionality reduction-based techniques (see
Section 3.2), identify first an optimally reduced set of coordinates from an original higher-dimensional ambient space
embedding the time series y. However, by contrast with other approaches, components spanning the low-dimensional
representation are typically lead eigenvectors of a discretised Laplace operator governing the spatiotemporal evolution
of the underlying p(y(x, t)), where x is homologous to a spatial coordinate. Thus, the reduced subspace spanned by the
main non-redundant eigenvectors is often termed a Diffusion Map [365] (see also Section 3.2.5) given by the set of ith
emergent coordinates {φ(x)i}.

In a subsequent stage, a fully connected (deep/shallow) architecture learns the dynamical system on the diffusion map,
in other words, estimates the function f that maps the temporal flow of the time series y to its derivatives w.r.t. emerging
coordinates, for instance, in a one-dimensional diffusion map φ1,

∂y(φ1, t)
≈ f

(
y,
∂y
,
∂2y

2 , . . . ,
∂ny

n , γ

)
, (17)
∂t ∂φ1 ∂φ1 φ1
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Fig. 16. Example of the reconstruction of neural trajectories in an RKHS derived from rodent anterior cingulate cortex (ACC) multi-array recordings,
aken from [396]. a. The flow field stems from projecting an ACC ensemble firing rates onto the three main coordinates of a discriminant subspace
DC1–DC3, computed here by kernel-fisher discriminant analysis orthogonalised for a faithful representation, details in, e.g., [387,395–397]). The
C1–DC3 is embedded into an optimal ambient high-dimensional RKHS (top schematics), spanned by neuronal ensemble firing rate and its higher-
rder correlations (up to 3rd order in this example) operating on a delay-coordinate map. The colour code (bottom) corresponds to rat choices in this
xperiment (the schematic of the radial-arm maze used in this experiment is taken from [387,395]), which occupy distinct regions of the subspace.
he flow field indicates faster shifts (large vector lengths) during the transition points, while it slows downs nearer the centroids of the clusters,
uggesting an attracting-like dynamic landscape. The inset quantifies this uneven distribution of flow field speeds as a function of the distance to the
entroid, further supporting this observation on flow convergence. b. This ordered phase-space structure cannot be achieved in the original feature
space or with delay-coordinate maps. c. It is also destroyed when the animal receives a high dose of amphetamine, even in an optimal ambient
space.
Source: Figure adapted from [396] and from [387] with publishers’ permission (the Society for Neuroscience and the Public Library of Science).

where γ is a set of parameters which enables the learned map to reproduce bifurcations.
Interestingly, when the argument of f contains no derivatives and incorporates additive Gaussian noise, the system’s

dynamics reduces to the well-known Langevin stochastic differential equation, stemming from a Fokker–Planck process
governing the temporal evolution of a probability distribution [407]. Thus, by approximating a discretised Fokker–
Planck operator, it is possible to empirically infer parameters of the stochastic process leveraging conventional likelihood
estimation techniques [407,408]. Langevin dynamics fit many natural phenomena and is of special interest in high-level
decision-making models in neuroscience. This formalism was recently used in [408] for model discovery based on a
one-dimensional Langevin equation and an additional stochastic spike generator,

dx(t)
dt
≈ D · F (x)+

√
2D · ψ(t; 0, 1),

y ∼ Poisson(x; λ(t)),
(18)

where x(t) is a latent trajectory, D is the diffusion constant, ψ is white normal noise, F is the deterministic map to be
inferred, and λ(t) is the parameter of an inhomogeneous Poisson process generating the observed spike train time series
y(t). This approach is capable of identifying a parsimonious model (that is, a set of {D, F (x), λ(t)}) from the spike train time
series. Thus, it was used to discern between competing models of perceptual decision-making by comparing probability
distributions underpinning such alternative parameter sets via standard Kullback–Leibler divergence [408].

In short, neuroscientific studies typically conceive the discovery of biophysical laws as the inference of deterministic
dynamics embedded in essentially stochastic neural processes. This goal has been interpreted either as empirically recon-
structing attracting and transient components of neural activity (disentangled from coupled noise e.g., [358,387,393]); or
40
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s identifying parameters of parsimonious, a priori model shapes [403,408]. These approaches provide valuable insights
n the latent neural dynamical landscape.
However, a liking theme in such inferential methods is that, despite their advances in tractability (e.g., [400,408]) and

nterpretability (e.g., [358,397]), they are often not designed to empirically discern a unique set of differential equations, as
t is popular in other areas of physics (e.g., [12,409,410], see examples in Section 4). This is at odds with the chief goal for
eductive approaches, outlined in Section 4.1.1. Key reasons for this shortcoming might be found in the high-noise levels
rising in intrinsically stochastically-dominated neural processes, in which most hidden variables are not experimentally
ccessible (especially in in-vivo) [387,408]. This challenging scenario hinders the direct application of approaches common
n other fields and poses an intriguing question for future research endeavours.

.2. Learning causally interacting brain regions from neurophysiological recordings

.2.1. Causality in the connected brain
The debate on the causal role of brain connectivity has a long-standing tradition (see e.g. [411]). The classic view

f functional segregation (mapping functions to physical brain regions) veered to connectionism, that is, brain functions
esult from interactions between neurocomputational units [411]. Consistently, the focus gradually shifted from functional
egregation (the study of regionally-specific brain activation) to functional integration (the study of the connectivity
etween cortical areas [411]).
Historically, connectivity studies establish the distinction between structural (the anatomical location of white matter,

xonal tracts), functional and effective connectivity (and sometimes with normative connectivity, in contrast to individual-
pecific connectomes) [53]. This classification is relevant to determine the type of causality questions that can—or
annot—be addressed [52,412]. Typically, functional connectivity methods estimate statistical dependencies such as
patiotemporal correlations or coherence measures between brain ensembles. In contrast, a subset of these methods,
ommonly termed effective connectivity approaches, refer to the quantification of directed interactions between brain
ircuits (e.g., [52,53,413,414]). In this arena, the quest for demonstrating causality relationships in neuroscience has
ttracted much attention over the recent decades [53,412], and its plausibility has been widely debated [412,415–418]. For
nstance, in neuroimaging, multiple issues such as confounding factors [419,420] and varying temporal delays (intrinsic
o, for instance, fMRI) challenge estimates of network information flow directionality (e.g., [53,415,418,421,422] among
any others).
Methodologically, a key characteristic of causal approaches—in difference with conventional probabilistic modelling—

s the need for predicting how the system reacts under interventions [415]; in other words, for defining counterfactual
odels (see Section 2.3.8). Problematically, a large amount of interventional data is necessary to falsify the wide range of
ausal hypotheses in a high-dimensional system like the cerebral cortex [415]. For instance, targeted brain interventions
ia intracranial electrical stimulation (iES) in conscious patients is typically a robust approach for testing causality [53],
ut large-scale datasets using this experimental protocol are scarce, given ethical and experimental limitations of
nvasive techniques [415]. However, comprehensive, high-quality interventional data would be fundamental to falsify
s many competing causal scenarios as possible. This is especially important in cognitive neuroscience given the lack of
xperimental access to some fundamental variables, which increases the number of plausible causal models underlying
bservable behaviour [415].
This shortage of comprehensive targeted lesion/stimulation datasets, and the improvement of whole-brain registration

echniques, led to the development of analytical methods (or adaptations of existing ones) to better understand causality
n cortical circuits. Most notably, Granger Causality and related approaches (GC, originated in the field of Economics [35]),
tructural Causal Modelling (SCM [3,200]), and Dynamic Causal Modelling (DCM [204]) have been extensively used, as
ill be discussed next.

.2.2. Causal methods in neuroscience
GC and an extension of this concept, Transfer Entropy (TE), are perhaps the most common model-free methods

or assessing causal relations in neuroscience. These two generalist approaches estimate the direction of causality
etween interacting neural populations by analysing the time series derived from brain responses [207,417,423]. They are
egular statistical tools for studying orchestrated interactions between brain regions via magneto/electroencephalography
M/EEG) and fMRI recordings (e.g., [54,207,424]). At microscopic levels, they have also been applied to detect synaptic
onnections between neurons [425]. Specifically, GC is based on the assumption that time series prediction leveraging its
ast values significantly improves by inputting historical values from another, causally connected time series (see details
n Section 2.1.3). Thus, the presence of causal relationships is detected by testing the hypothesis that one time series
utocorrelations have predictive power for the other time series [423].
TE expands this idea to accommodate broader types of nonlinear temporal interactions by computing the amount of

nformation that one time series transfers to another. Similarly to GC, it conjectures that the current value of one time
eries can be better estimated by conditioning the predictive probability to past values of both itself and another time
eries, inferring causality direction [121]. Alternatively, SCM and its recent variants are Bayesian approaches for assessing
lausible causal graphs in brain networks. They have been applied, for instance, to foster interpretability in behavioural
41
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ecoding approaches [426]. However, their use in cognitive neuroscience is still challenging, given the key difficulties
iscussed in Section 4.2.1, and the indirect nature of most neuroimaging measurements (reviewed in [415]).
Accompanying these model-free approaches, perhaps the most standard model-based technique for connectivity

nference between brain regions is Dynamic Causal Modelling (DCM). DCM is a Bayesian method incorporating different
egrees of a priori biological plausibility for understanding mechanisms underlying neuroimaging data (see e.g., [205,
06,427,428]). It has been employed to study neural pathways of effective connectivity in e.g., motor control, attention,
earning, decision-making, emotion, and other higher cognitive functions [429]; and even to model EEG seizure activity
ynamics in epilepsy [428].
In general, whole-brain modelling methods like DCM or other more recent models [430] can provide a more nuanced

nderstanding of the underlying mechanisms of brain function than model-free approaches [431]. However, the need
or large datasets w.r.t. the complexity of the range of alternative models hampers the interpretation of the estimated
onnectivity [53,205,206,427]. Indeed, classic DCMs [432] have been criticised for the difficulty in falsifying their model
election approach [421] and perhaps for this reason, they were not extensively tested in clinical settings [427].
pecifically [421] suggested the ambiguity of DCM inference in generating a unique optimal connectivity map due to,
.g., known challenges in model fitting and selection in such a large space of possible architectures [421,433].
These caveats of DCM as a robust approach for causality assessment led to the development of variants such as spectral

CMs, the canonical microcircuit DCM — introducing higher degrees of laminar-specific, biophysical detail towards more
nformative priors for E/MEG modelling-, or the stochastic dynamic causal model, sDCM (see a review in [429]). sDCM
ncorporates random processes to the basic DCM equations, enhancing its fitting capability to hemodynamic responses and
ence alleviating excessive dominance of priors in Bayes model selection [434]. In a classic DCM for fMRI data, the neural
tate x(t) ∈ {1, n} (for n interacting brain regions) corresponding to a single task-based input u(t), is determined using
he simple first-order differential equation dx(t)

dt = (A+ u(t) · B) x(t)+ u(t) · c; where the matrix A encodes (endogenous)
onnections between brain regions, B the strength in which inputs modulate each connection (modulatory inputs) and
the gain of the driving inputs to each region. sDCM expands this approach by adding intrinsic β(t) and extrinsic γ (t)

stochastic fluctuations to account for the incomplete observability of both states and inputs to brain areas relevant to the
cognitive task:

dx(t)
dt
= (A+ ν(t) · B) x(t)+ ν(t) · c + β(t),

ν(t) = u(t)+ γ (t),
y(t) = g(θ ) ∗ x(t)+ ϵ(t),

(19)

where ν(t) is a hidden input cause masked by fluctuations (univariate here for simplicity), and the last equation represents
a hemodynamic model (present in all DCMs variants) of non-neural parameters {θ, ϵ(t)}. Finally, their convolution with
the neural state x(t), yields the observed fMRI blood-oxygenation level-dependent (BOLD) response y(t) in relevant brain
areas (termed regions of interest, ROI) [429].

Fig. 17 summarises an illustrative reliability study from [434], specially designed for assessing sDCM robustness. In
this example, a large sample of participants (n = 180) was recruited from three different geographical locations. fMRI
recordings were obtained from healthy subjects from the same age range while performing a classic 2-Back working
memory task (to recall numbers shown two trials before). This N-Back task activates the dorsolateral prefrontal cortex-
hippocampal formation (DLFC-HF) network connectivity, which is abnormal in schizophrenia patients [435]. Bernal-Casas
et al. [434] used sDCM to identify the DLPFC-HF effective connectivity and compared the consistency of the models in
this multi-centre setting (Fig. 17). Three a priori likely mechanisms to explain the BOLD responses to this task were
implemented in three different families of models: with only driving inputs to the two regions (B ≡ 0, Fig. 17a, left),
only connectivity modulation (C ≡ 0, Fig. 17a, centre) and both mechanisms combined (Fig. 17a, right). Noticeably, the
random effects Bayes Model selection process strongly favours a specific connectivity model belonging to the driving
inputs family (Fig. 17b) over all the rest, consistently for the three independent locations. Specifically, the DLPFC-HF
connectivity parameters were statistically indistinguishable across datasets (Fig. 17b), supporting the reliability of sDCM
results.

In line with these whole-brain analyses, other studies showcased the consistency of causality methods at microscopic
levels. As a representative example, [436] recently proposed the effectiveness of GC in inferring information directionality
in zebrafish motor circuits from single-cell calcium imaging signals. Causally strong, interventional data was inaccessible in
this setting. Despite this, results were in full agreement with the known physiology of this species. In addition, and besides
these standard methods (GC, TE and DCM), recent approaches have also addressed the causality robustness question from
different angles, for instance, by focusing on changes in information reversibility as a sign of aberrant resting-state brain
dynamics — which could subserve as a biomarker of Alzheimer’s disease [437].

These and other even more indirect causality measures (like standard statistical approaches [52]) have provided useful
insights when operating on neurophysiological recordings with high temporal precision. The ideal recording modalities are
thus those capable of directly recording local (electrical) field potentials (LFP), such as intracranial electroencephalography
(iEEG) or neuronal-level techniques (like in Chen et al. [436]). However, when indirect causality measures are estimated
from other modalities—especially from functional imaging—the multiple confounders discussed earlier rank them in a
42
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i

Fig. 17. Example of consistency assessment for stochastic DCM, taken from [434]. a. Connectivity hypotheses associated with the performance of a
2-Back working memory task by healthy human participants [434]. Left: input fluctuations to the two ROIs (right DLPFC and left HF; 7 distinct model
combinations). Centre: input variance modulates the connections themselves (14 models). Right: combinations of both mechanisms (44 models).
Connectivity hypotheses are tested on independent datasets collected from three locations (Bonn, Berlin and Mannheim, 60 subjects each). Model
evidence (log-likelihood marginalised over model’s free parameters [427]) is much stronger for a model of the first family (#3, random effects Bayes
factor 98%+ in favour of this model). b. Remarkably, connectivity parameters do not differ across sites (Friedman non-parametric test, p > 0.2), and
nteraction between sites and model parameters were not found (p > 0.8), supporting the model’s robustness. Figure adapted from [434] with the
publisher’s permission (Elsevier).

weak position in a causality scale when compared with approaches based on interventions [53]. Therefore, their capability
for providing a reliable indication of causality interactions is highly disputed [53,421,438].

Nevertheless, limitations for assessing causal relationships in neuroimaging do not preclude indirect analytical ap-
proaches to constrain the universe of plausible causal graphs for a specific scenario [52,53]. Thus, there is a reasonable
consensus in considering them as valuable contributors to strengthen causality claims, provided they are combined
with more direct measures of causality based on interventional data [52,53]. Indeed, the ideal scenario from a causality
perspective occurs when its inference is consistent throughout different approaches; in other words, when different
methods having complementary views provide synergistic evidence [53]. For instance, converging evidence between
a causal fMRI/EEG model, a targeted lesion, and the stimulation of a specific cortical circuit would score high on a
causality scale than either of these methods alone; since the counterfactual could be established by focal stimulation [439]
combined with real-time neuroimaging recordings [53], enriching the conclusions of the lesion study.

This optimal coalescence of multiple causal approaches for effective connectivity inference was termed Convergent
Causal Mapping and is the recommended approach for designing new experiments [53]. Thus, from this concerted
perspective, studies considering a single approach in isolation—especially if it is not based on interventions—should not
make strong translational claims, like suggesting direct therapeutic applications [53,439]. In addition, future works should
consider testing robustness to different environments [415] (like in the example shown in Fig. 17 [434]) for further
reinforcing the credibility of the inferred causal flow.
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.3. Learning causal graphs of carbon and water fluxes

.3.1. Introduction
The Earth is a highly complex, dynamic, and networked system where very different physical, chemical and biological

rocesses interact in and across several spheres. Land and atmosphere are tightly coupled systems interacting at different
patial and temporal scales [122]. The main challenge to quantifying such relations globally comes from the lack of
ufficient in-situ measurements and the fact that some of these variables are latent and not directly observable with
emote sensing systems. One can, for example, measure SM but not GPP directly. As an alternative, many studies have
elied on model simulations to investigate SM-precipitation [440], GPP-SM [441] and ET-SM relations [442,443], to name
ust a few. However, assuming a model implies assuming the knowledge of the causal mechanisms and relations governing
he system. This is not necessarily a correct assumption, especially in model misspecification, non-linearities and non-
tationarities. Discovering such relations from data is of paramount relevance in these cases. In the following, we review
he performance of two standard methods of causal discovery from time series data to learn the relationships between
nvironmental factors and carbon and heat and energy fluxes at the local (site, flux tower) level and the global (planetary,
roduct-derived) level. At the local level, we exploit data acquire by eddy-covariance instruments estimating fluxes
xchange. At the global level, we exploit Earth observation data from satellite observations.

.3.2. Clustering of biosphere–atmosphere causal graphs at the site level
The atmosphere and terrestrial ecosystems constitute another closely interconnected complex system where processes

nteract across a range of temporal and spatial scales. Further, causal relations also depend on vegetation types,
limatic regions, and the season. Fortunately, measurement campaigns of the past decades have resulted in good
overage of measurement sites, available in the FLUXNET database [444], a collection of long-term global observations of
iosphere–atmosphere fluxes measured via the eddy covariance method. Runge et al. [115] discuss a similar case study
n-depth.

Here we review the study of Krich et al. [445] that analysed causal networks for different seasons at eddy covariance
lux tower observations in the FLUXNET network and how they depend on meteorological conditions. Fig. 18 explains the
ethodological setup. From a selection of 119 FLUXNET sites (Fig. 18(a)) daily time series data of the following variables
ere considered (see Fig. 18(b) for one site): short-wave downward radiation (or global radiation, Rg), air temperature
T), net ecosystem exchange (NEE) (inverted), vapour pressure deficit (VPD), sensible heat (H), latent heat flux (LE), gross
rimary productivity (GPP), precipitation (P), and soil water content (SWC). For details on data processing, we refer
o Krich et al. [445].

Causal networks were then estimated with PCMCI [170] (time lags from 0 to 5 days) in sliding windows of 3 months to
apture the temporal evolution of biosphere–atmosphere interactions. Based on findings in Krich et al. [446], a smoothed
easonal mean was subtracted to remove the common driver influence of the seasonal cycle. This results in 10.038
etworks for the different months and sites (an example network is shown in Fig. 18(c)). Node colours indicate the level
f autocorrelation (auto-MCI-partial correlation [170]), and link colours the cross-link strength (cross-MCI); time lags are
ndicated by small labels, and straight edges are contemporaneous. Since the strongest and most consistent links are
ontemporaneous, further analysis focused on these 15 links.
A previous study [446] discussed individual networks in more detail; the scope of Krich et al. [445] was to apply a

imension reduction, here t-distributed stochastic neighbour embedding (t-SNE [447]) which considers each of the causal
raphs as an observation in a high-dimensional space of the contemporaneous MCI partial correlation values (Fig. 18(d)).
-SNE allows projecting this high-dimensional space onto two dimensions (Fig. 18(e, left)) that are the dominant features
f transitions between different states of biosphere–atmosphere interactions. The coloured clusters in Fig. 18(e, left) are
ased on the OPTICS approach [448], and the four corners indicate the four archetypes of network connectivity and the
etworks’ underlying meteorological conditions (averages taken over the sliding windows in Fig. 18(b)). Finally, Fig. 18(e,
ight) shows the convex hulls of clusters and their average network.

Each point of the low-dimensional embedding represents a specific ecosystem’s biosphere–atmosphere interactions
t a specific time and allows us to investigate their behaviour. A main finding of Krich et al. [445] was that ecosystems
rom different climate zones or vegetation types have similar biosphere–atmosphere interactions if their meteorological
onditions are similar. For example, temperate and high-latitude ecosystems feature similar networks to tropical forests
uring peak productivity. During droughts, both ecosystems behave more like typical Mediterranean ecosystems during
heir dry season Such meta-analyses of causal networks allow for another perspective on understanding ecosystems,
ncluding an analysis of anomalous changes in network structure as indicators of ecosystem shifts (see Section 2.3.4).

.3.3. Causal relations at global scale
As an alternative to Granger causality, the work [39] presented the convergent cross-mapping (CCM) method, which

ay deal with the issues of non-stationary and nonlinear processes and deterministic relations in dynamic systems with
eak to moderate cause–effect variable coupling. CCM assesses the reconstruction of a variable’s state space using time
mbeddings to determine if X → Y . This method has been extended to account for causal relations operating at different
ime lags and applied to various research areas. However, it is sensitive to noise levels, hyperparameter selection, and
alse detections in strong, unidirectional variable coupling cases. To address these issues, the robust CCM (RCCM) [122]
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Fig. 18. Clustering causal graphs of local measurement stations of biosphere–atmosphere interactions (adapted from Krich et al. [445]). See the main
ext for explanations.

lternatively relies on bootstrap resampling through time and the derivation of more stringent cross-map skill scores. The
ethod also exploited the information-geometric causal inference (IGCI) method in [449] to infer weak and strong causal

elationships between variables and estimate the embedding dimension to derive global maps of causal relations.
Let us exemplify the RCCM method to discover interactions of three key variables in the carbon cycle: moisture,

hotosynthesis and air temperature (Tair). For that, we use data compiled in the Earth System Data Lab (ESDL), which
ontains harmonised products with a spatial resolution of 0.25◦ and a temporal resolution of 8 days, spanning over 11
ears from 2001 to 2011. The RCCM method is applied in each grid cell, which allows us to infer spatial patterns of causal
elations between several key variables of the carbon and water cycles.

Fig. 19 shows GPP drives Tair mostly in cold ecosystems due to changes in land surface albedo. Results show GPP is an
mportant forcing of local temperature in many areas. Recent studies have found temperature is an important factor of
PP, driven by radiative factors in cold climates and turbulent energy fluxes in warmer, drier ecosystems. SM and Tair are
losely linked, limiting evaporation and raising Tair under dry conditions. This could explain the significant impact of Tair
n high latitudes. GPP is mainly influenced by Tair in water-limited regions, especially in high northern latitudes where
old temperatures limit photosynthesis and plant growth. GPP and ET are tightly related as carbon assimilation in plants
s linked with water losses through transpiration [450]. Low water availability reduces GPP and ET, causing increased
ir and surface temperatures and a drier atmosphere. SM being stronger than GPP is mostly seen in transitional wet/dry
limates [451]. No strong forcings in tropical rainforest areas indicate GPP is mostly driven by solar radiation and affected
y high VPD values [452].
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Fig. 19. Applying RCCM in [122] to discover causal relations between GPP, Tair and SM. GPP drives Tair in cold ecosystems; Tair controls SM in
ater-limited areas; GPP dominates SM. Croplands were masked to avoid interference from human activity.

.4. Causal climate model intercomparison

As introduced in Section 2.3.7, causal inference can help to assess the output of physical models and evaluate and
ompare them against observations at the level of causal dependencies [45,263–265]. Climate models [453] provide
hort-term predictions and future climate projections under given anthropogenic emission scenarios and are the basis
or climate-related decision-making. As models can only provide an approximation to the real system, it is essential to
valuate them against observations. Such climate model evaluation is largely based on means, climatologies, or spectral
roperties [263,454]. Here the problem of equifinality may occur: even though a particular model might well fit descriptive
tatistics of the data, the model might not well simulate the causal physical mechanisms that produce this statistic, given
hat multiple model formulations and parameterisations, even when wrong, can fit the observations equally well. The issue
s that such models would lead to erroneous future projections — a causal problem of out-of-distribution prediction. Causal
odel evaluation [10] can evaluate the ability of models to simulate the causal interdependencies of its subprocesses in
process-based model evaluation framework [455].
Here we briefly summarise one approach in this direction [265]. The author aimed to compare causal networks

mong regional subprocesses in sea-level pressure between observations and climate models of the CMIP ensemble [453].
ig. 20a–d illustrates the method’s steps. First, the regional subprocesses were constructed from gridded climate time
eries (daily-mean sea level pressure from the NCEP-NCAR reanalysis [456]) using Varimax principal component analysis
PCA) to obtain a set of regionally confined climate modes of variability (Fig. 20b). The Varimax-PCA weights were then
pplied to the pressure data from each climate model (the regional weights’ cores are indicated in red). Each component is
ssociated with a time series (3-day averaged) and is one of the causal network nodes. Then the causal discovery method
CMCI [170] was applied to these time series to reconstruct the lagged time series graph among these nodes, which
onstitute characteristic causal fingerprints (Fig. 20c,d) for the observational data as well as the individual models. Node
colours indicate the level of autocorrelation (auto-MCI-partial correlation [170]), and link colours the cross-link strength
(cross-MCI); time lags are indicated by small labels. Only the around 200 most significant links are shown.

These causal fingerprints can then be used for model evaluation and intercomparison. Fig. 20e depicts a comparison
f models among each other, that is, the matrix of average F1-scores for pair-wise network comparisons between
nsemble members of 20 climate models (labelled following CMIP-nomenclature in capital letters) for simulations
panning approximately the historical period from 1948 to 2017 and two surrogate models (Random, Independent). The
ows show the models taken as references in each case, and the columns indicate the models compared to these references.
igher scores imply a better agreement between networks, i.e., that the two models are more similar regarding their
ausal fingerprint. One can see that causal fingerprints from different ensemble members of the same model (diagonal in
ig. 20e) are more consistent than networks estimated from two different models (off-diagonal). The blocks are consistent
ith different models sharing a common development background. In Fig. 20f, the models’ causal fingerprints are each
46
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Fig. 20. Causal climate model evaluation (adapted from Nowack et al. [265]). See the main text for explanations.

ompared to the fingerprint of the observational data (ordered F1-scores). The result is a continuum of more- and less-
imilar models (but models have significantly different causal fingerprints). The networks can be further investigated to
nalyse which regional interactions the models differ more from observations.
Causal model evaluation can provide important information to model developers on where their models can be

mproved. Furthermore, Nowack et al. [265] show that more realistic fingerprints also affect projected changes in land
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Fig. 21. Results for learning the density functional for Lennard-Jones fluids. (a) shows the equation of state P(ρ) (pressure) for different interaction
strengths ϵ comparing Monte-Carlo simulations (MC) with the Machine learning (ML) results. (b) density profile for ϵ = 1.25, µ = ln(1.15) inside the
raining region, but V is not in the training data. (c) density profile at a hard wall for ϵ = 1.9, µ = ln(1.9) (outside the training region ϵ ∈ [0.5, 1.5]).
ark solid lines are simulation profiles, and blue dashed lines are ML results. Insets in (b) and (c) show ∆ρ = ρmc

− ρml .

urface precipitation. Hence, causal model analyses could be used to constrain climate change projections. The assumption
s that the underlying physical processes (e.g., large-scale circulation) lead to dynamical coupling mechanisms captured
n the causal fingerprints. One may now argue that high modelling skill on historical data is also relevant for modelling
uture changes if the physical processes remain important under future climate change.

.5. Learning density functionals

Being able to describe many-body systems is exciting and important for many applications. Density functional
heory Evans [457] (DFT) is an approach to creating a description for classical and quantum many-body systems in
quilibrium. The aim is to find a unique (free) energy functional that gives rise to the particle density profile. The analytical
orm of the (free) energy functional is generally unknown, except for a handful of particular model systems. One way to
reat more complex systems is to perform computer simulations and learn the energy functional via machine learning.
he first attempts in classical DFT used a convolutional network [458], which does not allow much theoretical insight.
In Lin et al. [319], the above-mentioned symbolic regression method, EQL [101], was adapted to represent part of the

nergy function. This is an interesting application, as the problem contains known parts of the computational pipeline
hat we do not want to replace and other parts that should be replaced via the data-driven approach. The fact that EQL
an be embedded into any differentiable computational structure is crucial here.
The problem can be formulated as a self-consistency equation:

ρ(x) = exp

(
µ−

δF (ρ(x))
δρ

⏐⏐⏐⏐
ρ=ρeq

− V

)
, (20)

here ρ is the particle density, F is the external free energy functional that needs to be learned, and µ and V are chemical
nd external potential, respectively. Notice that the derivative of F (which is represented by an EQL network) is used in
he equation. An analytical description for F can be obtained using symbolic regression on simulation data. In Lin et al.
319], for the case of hard rod particles and Lennard-Jones fluids, solutions were found that extrapolate well to unseen
ituations (different external potential or mean density), as shown in Fig. 21. It is a promising approach to gain more
heoretical insights when applied to less studied systems.

.6. Discovering and assessing governing equations in boundary-layer transition to turbulence

A classical approach to discovering the governing equations of a reduced-order model (ROM) describing a particular
henomenon, for which the governing partial differential equations (PDEs) are known, is to perform Galerkin projec-
ion [459,460]. In Galerkin projection, a set of orthogonal basis modes (obtained, for instance, via POD) are used to develop
ROM of the system from data. Then, the governing PDEs are projected onto these modes, transforming the PDEs into
system of ordinary differential equations (ODEs) governing the dynamics of the temporal coefficients associated with

hose modes [93].
For incompressible fluid flows, the spatiotemporal velocity vector u(x, t) (where x are the spatial coordinates and t

ime) can be expressed as follows after performing POD:

u(x, t) ≃ u0(x)+
r∑

k=1

ak(t)uk(x), (21)

where u0 is the mean flow, uk are the spatial modes, ak(t) are the temporal coefficients and r is the number of retained
modes in the ROM. The expansion (21) is then substituted into the governing PDEs, i.e. the incompressible Navier–Stokes

equations, taking advantage that the POD modes are linear combinations of the instantaneous flow realisations (thus
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atisfying the boundary conditions) and are solenoidal (, i.e. divergence-free, due to the incompressibility condition). It
s then possible to take an inner product in space with ui(x). Since the POD modes are orthogonal, a set of ODEs can be
btained for the time derivatives of the temporal coefficients dai(t)/dt as a function of the spatial modes and also ai(t).

Despite being a widely-used method, it has the limitations of requiring knowledge of the underlying PDEs, and it also may
exhibit convergence problems in more challenging scenarios. As discussed in Section 3.2, another alternative to produce
a ROM for physical systems in a purely data-driven way is dynamic-mode decomposition (DMD), in which the obtained
modes are orthogonal in time [461]; note that this approach, in its compressive version [462], shares similarities with the
eigensystem-realisation algorithm (ERA) [463]. In this sense, DMD and its connections with the Koopman operator [464]
were exploited by Eivazi et al. [465] to reproduce the dynamics of a near-wall model of turbulence [466] by using external
forcing to reproduce the nonlinear behaviour of the system [321,326].

In addition to the approaches mentioned above, other techniques enable learning the equations of motion just from
data, as discussed in the early work by Crutchfield et al. [467]. These approaches typically rely on a library of candidate
functions to build the resulting governing equation and solve an optimisation problem to obtain the expression that best
represents the data. Note that it is essential to use any knowledge on the physical properties of the analysed data to inform
the library (e.g. whether non-linearities, periodicities, etc. are present in the system that produced the data under study),
as well as to define the relevant state variables, sampling rate, the initial set of parameters defining relevant trajectories,
etc. Embedding prior physical information into the obtained model is crucial for the success of these approaches, and
failing to do so may lead to rate and even incorrect models [468]. Furthermore, these approaches typically suffer from
the curse of dimensionality [469], making it even more important to make the right choices in the library of candidate
functions to ensure convergence; thus, being able to define the best basis functions to reduce the dimensionality of the
system while retaining the most relevant physics is also is critical. Generally, only after solving the optimisation problem
is it possible to assess which terms in the library are necessary and which ones may be combined, a fact that complicates
a-priori equation discovery.

SINDy has been successfully applied to boundary-value problems [470] using forcing functions and performs well
even with noise. Furthermore, SINDy has produced very successful results in a wide variety of fluid-mechanics problems,
ranging from thermal convection [410], chaotic electroconvection [409], the so-called ‘‘fluidic-pinball’’ problem [471],
turbulent wakes [472] and ROM development [473]. Interestingly, SINDy has also been successfully combined with
autoencoders to discover low-dimensional latent spaces [94], benefiting from the non-linear data-compression capabilities
of the latter and the interpretability of the former. This is certainly a promising direction to discover hidden complex
relations in fluid-flow data and other high-dimensional physical systems, which requires further investigation, particularly
when obtaining deeper insight into the interpretation of the latent variables.

Besides the methods above based on discovering nonlinear dynamical systems, other strategies exist to obtain
equations from data. For instance, gene-expression programming (GEP), a branch of evolutionary computing [474], is based
on having a population of candidate functions to build the solution that best approximates the data and progressively
improving this population by the survival of the fittest. The main advantage of this approach is that it leads to closed-
form equations, even for data where the governing equation is unknown. In principle, it leads to interpretable solutions
(although, in some cases, the resulting equations are so convoluted that interpretability is complicated). GEP has been used
to model turbulence [475], particularly in the context of the so-called Reynolds-averaged Navier–Stokes (RANS) equations.
In short, the RANS equations are obtained after decomposing the instantaneous velocity into a mean and a fluctuation
component (Reynolds averaging [476]), and although this simplifies the flow-simulation process (RANS approaches are
widely used in industry), the so-called closure problem emerges [477,478]. This problem is associated with the unknown
impact of turbulent fluctuations on the mean flow. All the existing models for these stresses are empirical, which precludes
RANS simulations from producing accurate results for arbitrary flow cases. In this context, Weatheritt and Sandberg [479]
used GEP to obtain general expressions for these turbulent stresses in various cases, including turbulent ducts [480], which
are challenging for RANS models due to the presence of secondary flows. They achieved quite successful RANS models
for the secondary flows. GEP effectively obtained more general expressions for the turbulent stresses than those in the
classical literature [481], a critical step for RANS models to produce a reasonable performance for complex flows [482].

Finally, we conclude with a technique that is not aimed at discovering equations from data but rather focuses on
identifying the dominant terms in the equations for various geometrical regions in the domain under study, given the
available data. This method is based on data-driven balance models [483]. It can help improve our system’s physical
interpretation by understanding the most relevant terms defining various mechanisms in the data, particularly in non-
asymptotic cases where the negligible terms are not obvious. Using unsupervised learning, the authors sought clusters
of points in the domain with negligible covariance in directions that represent terms with a negligible contribution
to the physics, a condition equivalent to stating that the equation is satisfied by a few dominant terms within the
cluster. In particular, they used Gaussian-mixture models (GMMs) [484] to cluster the data. Then they obtained a sparse
approximation in the direction of maximum variance using sparse principal-component analysis (SPCA) [485]. Callaham
et al. [483] show the applicability of this framework to a wide range of problems, including turbulence transition,
combustion, nonlinear optics, geophysical fluids, and neuroscience. In all these cases, they obtained relevant insight into
the governing equations, which can help uncover novel and unexpected physical relations. In particular, their application
to the case of transition to turbulence is very illustrative, as shown in Fig. 22. This figure shows that starting from
high-fidelity turbulence data, the RANS equations [477,478] mentioned above are obtained and their terms analysed.
49



G. Camps-Valls, A. Gerhardus, U. Ninad et al. Physics Reports 1044 (2023) 1–68

m
β

Fig. 22. Data-driven balance model by Callaham et al. [483] applied to a boundary layer undergoing transition to turbulence. (a) Instantaneous data
from high-fidelity simulations [486] and (b) terms in the RANS equations obtained from the turbulence statistics. (c) Covariance of the various terms
grouped into clusters, labelled based on their physical meaning. (d) Representation of the various clusters in the flow field, together with various
boundary-layer quantities.
Source: Figure reproduced from Ref. [483] with permission of the publisher (Springer Nature).

Visualisation of the clustering in equation space reveals some interesting relations, such as the high covariance of the
so-called viscous and Reynolds shear-stress-gradient terms, ν∇2u and (u′v′)y respectively, which identify the viscous
sublayer in the domain. Note that subscripts here denote partial derivatives with respect to the corresponding spatial
variable, the overbar indicates time averaging, and the prime is used for fluctuating quantities. The inertial sublayer,
which would correspond to the turbulent region in this boundary-layer flow, would be dominated by the convection of
the mean flow u ux and (u′v′)y, which are again correctly identified through a strong covariance and highlighted in the
corresponding region of the domain.

4.7. Learning reduced-order models for vortex shedding behind an obstacle

In this section, we illustrate the possibility of learning ROMs in the case of flow around an obstacle, focusing on the
wake. One possibility is to perform a modal decomposition, for instance, based on POD, and then carry out Galerkin
projection of the governing Navier–Stokes equations onto the POD modes, as discussed in Section 4.6. This would lead to
differential equations governing the temporal evolution of the POD coefficients associated with the spatial modes. This
approach may exhibit two main problems in the case of turbulent flows, namely the possible numerical challenges of
performing Galerkin projection and the need for many modes to reconstruct a significant fraction of the flow energy.
As stated above, autoencoders can provide a compressed version of the original data by exploiting non-linearities, thus
exhibiting the great potential to express high-dimensional turbulence data in a few non-linear modes. As shown by Eivazi
et al. [349], it is possible to learn a reduced representation of the original data where the latent vectors expressed in
physical space exhibit orthogonality. This is achieved by promoting the learning of a latent space with disentangled latent
vectors, which also enables learning parsimonious latent spaces. This is done by regularising the loss function, where the
associated hyperparameter β gives the name to the β-VAE framework discussed in Section 3.2. Larger values of β give
ore weight to the term in the loss responsible for learning statistically-independent latent variables, therefore, when
= 0 one obtains the standard reconstruction loss function. In contrast, larger values of β lead to higher orthogonality of
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he learned modes. At the same time, larger β values will yield a worse reconstruction for the set number of latent vectors
n the model. Based on this trade-off, it is possible to obtain a good balance between reconstruction and orthogonality.
ivazi et al. [349] illustrated this on the turbulent flow around two wall-mounted obstacles and showed that with only
AE modes, it is possible to reconstruct around 90% of the turbulent kinetic energy (TKE) with over 99% orthogonality
f the modes. In comparison, 5 POD modes only reconstruct around 30% of the TKE. This is very interesting because
he β-VAE, which, unlike other AE-based methods, produces orthogonal modes, yields a reduced representation that can
e interpreted from a physical point of view. The first AE and POD modes are very similar, identifying the shear layers
round the obstacles and the wake shedding. However, the AE modes exhibit a broader range of scales, incorporating
dditional higher-frequency turbulent fluctuations into the basic identified features (similar to those in the POD results).
onsequently, there is great potential for this type of method to shed light on the physics of complex turbulent flows, in
articular when using novel data-driven methods, such as transformers [487,488], to predict the dynamics of the latent
pace.
Another linear approach discussed above to obtain low-dimensional representations of the flow is dynamic-mode

ecomposition (DMD), which is based on building a linear operator connecting the instantaneous snapshots in time.
nlike POD, the DMD modes are orthogonal in time, i.e. they are associated with a single frequency, which helps identify
emporal features in fluid flows. HODMD enables establishing more complex relationships among snapshots, and although
t requires additional hyper-parameter tuning, it can help to identify more detailed patterns in the flow. Martínez-Sánchez
t al. [489] used HODMD to study the turbulent flow in a simplified urban environment, emphasising the structures
ehind a wall-mounted obstacle. In this type of flow, a number of flow features emerge around the obstacle [490], where
very important feature is the so-called arch vortex. This vortex, where the legs exhibit wall-normal and the spanwise
oof vorticities, is responsible for the high concentration of pollutants in urban environments; therefore, understanding
ts formation mechanisms can have important implications for urban sustainability. In this context, HODMD enabled
dentifying two types of modes, namely vortex-generator and vortex-breaker features. The former is associated with
ow frequency, whereas the latter exhibits higher frequency, and both play important dynamic roles in flow physics.
nother extension of the HODMD method also applied to the flow around a wall-mounted obstacle, was proposed by
mor et al. [491]. This study featured the so-called on-the-fly version of HODMD. The data is analysed dynamically as
he simulation is run, without storing massive amounts of data for post-processing. Furthermore, more refined criteria
or convergence of the modal decomposition were proposed, thus yielding a more effective way to analyse the data.
onsequently, this on-the-fly approach reduces up to 80% in memory requirements compared with the traditional offline
ethod. This is a big advantage when applied to large-scale numerical databases.
Causality maps, discussed in Section 2, have been used to study the dynamic interactions present in turbulent flows,

ocusing on the physical roles of various features. In particular, Lozano-Durán et al. [492] studied the time series of
he first Fourier modes in a turbulent channel. They found the following strong causal relations among modes: i)
all-normal modes causing streamwise modes, a phenomenon very closely connected with the well-known lift-up
echanism [493,494] in near-wall turbulence; (ii) wall-normal modes causing spanwise modes, which is associated with

he roll generation, also connected with the lift-up process and the incompressibility of the flow; (iii) streamwise modes
ausing spanwise ones, and spanwise modes causing wall-normal ones; both phenomena are connected with the mean-
low instability, including spanwise meandering and breakdown of the streaks [495,496]. These causal relations were
lso identified [497] in other simplified models of near-wall turbulence, such as the nine-equation model by Moehlis
t al. [466], a fact that confirms the robustness of the causality framework utilised to study turbulence phenomena.
egarding the flow around a wall-mounted obstacle, the various modes discussed above and their connection with the
rch vortex were assessed by Martínez-Sánchez et al. [497] also using causality analysis. As can be observed in Fig. 23 (left),
he flow under consideration exhibits large-scale separation at the sharp edges of the obstacle and very prominent vortical
tructures in the wake. Fig. 23 (right) exhibits the vortex-generator and breaker modes discussed above (associated with
ow and high frequencies, respectively), as well as an additional type of mode of intermediate frequency, denoted as
ybrid mode. Clear causal relations are identified between the vortex-breaker and hybrid modes, closely connected with
eveloping vortex-generator modes. This is of great interest because these causal relations define a sequence of events
equired for the production of the arch vortex (and the subsequent accumulation of pollutants in urban environments);
hus, being able to control and inhibit this sequence of events may lead to novel sustainability solutions in cities (as well
s to a deeper physical understanding of these complex turbulent flows).

.8. Uncovering new physical understanding in wall-bounded turbulence

Turbulent flow is one of the most elusive areas of study within fluid mechanics. The wide range of spatial and
emporal scales present in turbulence, and the highly non-linear behaviour that characterises it, significantly complicate
he possibilities of gaining a deep physical understanding of the main mechanisms within turbulence; this becomes even
ore complicated in the case of wall-bounded turbulence, which is ubiquitous in science and engineering. Turbulence is
haracterised by coherent structures, three-dimensional regions that instantaneously satisfy certain physical properties.
ote that this term sometimes refers to the features extracted by modal analysis. Still, we will consider the above
efinition in this work’s context. A very important coherent structure in wall-bounded turbulence is the near-wall streak,
xtensively studied in the 1960s by Kline et al. [499]. As reported by Kim et al. [500], the near-wall production of
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Fig. 23. (Left) Instantaneous snapshot of the flow around a wall-mounted square cylinder, where the vortex clusters are identified with the Q
riterion [498]. The structures are coloured by their streamwise velocity, ranging from (dark blue) negative to (dark red) positive values. (Right)
chematic representation of the causal relations among modes, where two vortex-breaker (B), two hybrids (H), and one vortex-generator (G) modes
re shown.
ource: Figure adapted from Ref. [497].

Fig. 24. Coherent structures in a turbulent channel flow. We show (left) a vortex cluster and (right) an intense Reynolds-stress event.
Source: Figure adapted from Ref. [504] with permission from the publisher (Cambridge University Press).

turbulence is very closely connected with the dynamics of these streaks. Another important quantity in wall turbulence
is the Reynolds shear stress, briefly introduced in Section 4.6. This quantity is essentially a correlation between stream-
wise (u′) and wall-normal (v′) fluctuations and is responsible for the wall-normal momentum transport. Studying the
coherent structures most relevant to the development of the Reynolds stresses is a critical goal for reaching a deeper
understanding of turbulence. Several studies in the 1970s [501,502] focused on the quadrant analysis to carry out this
task; in this analysis, different near-wall events are classified in terms of the sign of their fluctuations, where the most
dominant events are the so-called sweeps (u′ > 0, v′ < 0) and ejections (u′ < 0, v′ > 0). More recently, del
Álamo et al. [503] have studied vortex clusters in turbulent channels, and Lozano-Durán et al. [504] have analysed
extreme Reynolds-stress events in the same flow case. The latter is defined as the three-dimensional connected regions
satisfying:

|u′v′| > Hurmsvrms, (22)

here the subscript ‘rms’ denotes root-mean-squared quantities, and H is an empirical threshold denoted as a hyperbolic
ole. In Fig. 24, we show both types of coherent structure in a turbulent channel flow. Additional insight into the
ole of both types of structures can be obtained by tracking their evolution in time, such that the various structure
nteractions (advection, merges, splits, and dissipation) can be assessed [505]. Convolutional neural networks (CNNs)
ave been used to predict the temporal evolution of the structures in turbulent channels [506], an approach that enables
deeper understanding of their dynamic behaviour. In turbulence, there is a direct cascade of energy from the larger,
nergy-containing structures towards the smaller dissipative ones; however, there is also an energy path in the opposite
irection [507]. This picture, observed in homogeneous isotropic turbulence, becomes even more complicated in the case
f wall-bounded turbulence [508]. Each wall-normal location has a different energy cascade because the wall segregates
he flow by introducing wall-normal inhomogeneity. A comprehensive review of coherent structures in turbulence was
rovided by Jiménez [509], who highlighted the potential and challenges of this perspective on turbulence. A very
nteresting open question raised in this work is the multi-scale organisation and interaction among the various individual
tructures and how they can dynamically produce the underlying physics of the flow.
Despite the extensive body of work on coherent structures in turbulence, there are still a number of open questions

egarding the objective identification of the structures which play the most important role in the dynamics of turbulent
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lows. This fundamental question has implications for the theoretical knowledge of the physics of turbulence and the
otential of flow-control strategies. If it is possible to identify these structures and they can be suppressed, there may
e potential for novel and effective drag-reduction techniques. The vortex clusters and Reynolds-stress structures were
efined based on historical reasons and physical intuition. Although they play an important role in the flow, it is unclear
hether these are the most relevant motions. A new type of structure that maximises the momentum transfer in a
urbulent channel was identified by Jiménez [510], and he reported significant differences between these and the Reynolds
tresses. An extension of this idea was implemented in two-dimensional decaying turbulence by removing subregions of
he domain and assessing their relative influence in the future evolution of the flow [511]. The idea is to quantify the
‘significance’’ of the various regions, and the result confirmed the initial physical intuition regarding this case: the most
ignificant regions were vortices. The least significant ones exhibited high strain. In this direction, Cremades et al. [512]
roposed an approach to exploit the explainability of neural networks to assess the relevance of the coherent structures in
urbulent flows. In this study, the SHapley Additive exPlanations (SHAP) framework [513,514] was used on the coherent
tructures identified in a turbulent channel; more concretely, the intense Reynolds stresses were first identified, and then
CNN was used to predict the location of those structures in the next time step [506]. The SHAP technique allows for

dentifying the impact of each of the features in the input (in this case, the three-dimensional Reynolds-stress events)
n the prediction of the next step, thus enabling an assessment of their relevance to the future evolution of the flow.
his framework could be used to find new ways of objectively identifying coherent regions in the flow. Another way to
ain insight into the detailed mechanisms of turbulence via neural networks is to perform flow estimation, e.g. from the
uantities measured at the wall to the turbulent fluctuations above [515,516]. After training a neural network to make this
rediction, detailed knowledge of the connection between the scales at the wall and the ones above can be gained through
eural-network interpretability [517]. This approach allows us to discover a symbolic equation that can reproduce the
redictive capabilities of the network. This can be achieved through the methodology developed by Cranmer et al. [518],
hich relies on symbolic regression (e.g. based on genetic programming) to obtain the equation relating input and output;
ee Section 4.6 for a related discussion. By analysing such an equation, it is possible to identify the characteristics of the
cales relevant to this wall-normal interaction in wall-bounded turbulent flows.

.9. Discovery of ocean mesoscale closures

The closure problem, described above in RANS equations, apply to many ocean and atmosphere modelling. In
limate modelling, we must resolve (spatial) scales from metres to thousand kilometres. However, due to computational
imitations, we need to truncate the spatial spectrum at a given scale — equivalent to the grid spacing of the numerical
limate model. Therefore, all processes occurring below the spatial scales need to be approximated — this is the so-called
arameterisation or closure problem for subgrid processes. The closure problem, described above in RANS equations, apply
o many ocean and atmosphere modelling.

While RANS separates terms into time-averaged and fluctuating components, the most common approach is based
n Large Eddy Simulation (LES), in which the filtering separates into a resolved scale and a sub-grid scale. The LES
ecomposition is based on the self-similarity of small-scale turbulent structures. The resolved scales are defined using
convolution integral with associated physical width, usually the grid cell size. Commonly used filters are box filters,
ormalised Gaussian, or a combination of both filters. Applying the filtering to the governing equations of the fluid
momentum and buoyancy) gives rise to a set of equations for the resolved scale, with a term—coined subgrid scale
orcing—which depends on the fine scale. For the momentum equation, this term subgrid term would be expressed as

S =
(
Sx
Sy

)
= (u · ∇)u− (u · ∇)u, (23)

here ∇ is the horizontal 2D gradient operator, and the horizontal velocity u = (u, v), and the overline denotes the
iltered (hence resolved) velocity on the grid.

Therefore S must be approximated with only resolved scales u since the total variable u is not available to the model.
ypically turbulence subgrid closures in a fluid are ad-hoc, such as Smagorinsky-type closures, in which the form of the
losure is based on some physical argument that is assumed to hold across scale and regimes. This is rarely the case.
For ocean and atmosphere problems, the closure idea can also be boiled down to finding an expression for multiscale

nteraction that only depends on the resolved scale of the fluid. Similarly to traditional fluid problems, closures or
arameterisations in the ocean and atmosphere modelling is often empirical and a source of error in simulations.
nstead, equation discovery algorithms, as discussed in previous sections, can be used to uncover relationships between
ariables. For the closure problem, these algorithms can be applied to derive equations that describe the behaviour of
he subgrid scales using resolved variables based on simulated data. The goal is to find the simplest (in some sense)
athematical relationship that accurately captures the behaviour of the subgrid-scale model, which can then be used for
rediction. The main advantage of equation discovery algorithms is that they can uncover relationships that may not be
mmediately apparent, reducing the need for expert knowledge and human intuition in model building, as typically done
or parameterisation in ocean and atmospheric modelling.

Zanna and Bolton [519] used Relevance Vector Machine (RVM), a sparse Bayesian regression algorithm, to find closure
odels for momentum and buoyancy subgrid forcing. The RVM algorithm finds the most relevant input features—

unctions of the resolved scales—that will describe the subgrid-scale model. The RVM starts with many basis functions
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nd iteratively removes irrelevant basis functions, arriving at a compact set of basis functions that best represent the
ata. Compared to other methods, the RVM algorithm has the advantage of handling noisy and redundant data and
igh-dimensional input spaces. Finally, it provides a probabilistic output, which can be a useful measure of uncertainty.
Below is a closure found by Zanna and Bolton [519], using data from an ocean primitive equation model

S ≈ κBT∇ ·

(
ζ 2 − ζD ζ D̃

ζ D̃ ζ 2 + ζD

)
, (24)

here ζ = vx− uy,D = uy+ vx, D̃ = ux− vy, the short-hands ()x,y ≡ ∂
∂x,y are used for spatial derivatives, ζ is the relative

vorticity, and D and D̃ are the shearing and stretching deformation of the flow field, respectively. The authors were able to
relate the found expression to energy transfer across scales, which mimics the impact of unresolved scales on large-scale
energetics.

However, sparse linear regression entails trade-offs between the size and expressiveness of the feature library
and the complexity and cost of sparse regression, as discussed in Zanna and Bolton [519] and above. If we wish to
include a deep library of functions, the number of different expressions needed will grow exponentially and might be
limited by accurately taking derivatives of functions. Finally, many expressions might be highly correlated, preventing
convergence [520].

As discussed above, genetic programming (GP) [291] is an alternative approach. GP algorithms, unlike sparse regression,
do not require a defined library of functions. [521] used GP with some modifications, including building spatial derivatives
in spectral space and combining them with sparse regression to find robust expressions in turbulent datasets generated
by idealised simulations Focusing on results from [521], they look for the missing subgrid forcing for potential vorticity,
q — a variable that combines momentum and buoyancy effects in geophysical flows, and related to ∇ × u. In the first
few iterations, the algorithm discovered quadratic expressions proportional to (u · ∇)q, similarly to previous theoretical
tudies [522,523]. Often these expressions cannot be used as standalone parameterisations implemented in coarse-
esolution models due to numerical stability constraints. The next few iterations of the GP-sparse regression algorithm
ed to eddy-viscosity models that dissipate energy at small scales, ∇4q and redistribute energy to larger scales, i.e. kinetic
energy backscatter ∇6q [524]. Additional terms, which are cubic in model variables and contain a double-advection
perator, (u·∇)2, can ensure dissipation of enstrophy [525], helping with model stability. In addition, there were additional
erms that we were not discovered previously. In summary, our discovered closure contains elements of existing subgrid
arameterisations, which have pros and cons when used as standalone ones but, when combined, could capture all
ecessary properties for stable implementation and accurate representation of momentum, energy and enstrophy fluxes
issing at coarse resolution.
To test our discovered closure, we implement it in a coarse-resolution simulation (see Fig. 25). The goal is to improve

he physics of the coarse-resolution model (panel B) relative to the high-resolution model simulation (panel A). To
his end, we run the coarse-resolution simulation with a physics-based (empirical parameterisation; panel C), with
ata-driven parameterisation learned using a convolutional neural network (panel D), and with the equation-discovery
arameterisation (panel E). All simulations are improving the flow, and some aspects of the statistics are also improved.
owever, generalisation is vastly different without retraining the data-driven driven parameterisations or tuning the
hysics-based parameterisations. We test our parameterisations in the same model in which we changed the rotation
ate in order to form jets and less isotropic turbulence (panels F for high resolution and G for low resolution without any
arameterisation). The physics-based parameterisation has little impact on the flow (panel H), but the implementation of
he deep learning parameterisation has a very detrimental effect on the flow, most trying to make the flow more isotropic
panel I). On the other hand, the implementation of the equation discovery-based parameterisation substantially improves
he flow (panel J) — reinforcing the need to discover relationships from data that encapsulate the necessary laws of physics
o mimic the scale interactions which are internal to the fluid and not dependent on the configuration of the simulations.

This symbolic parameterisation includes up to the seventh spatial derivative of q, which may be unrealistic to imple-
ent into a climate model. However, it might be more realistic than a fully non-local approach, such as the convolutional
eural network parameterisations considered in other studies or extremely local physics-based parameterisations (such as
nti-viscosity). Most importantly, the sparse model can generalise well without retraining, while the neural network-based
arameterisations perform poorly.

. Concluding remarks

The fields of causal and equation discovery have emerged in recent years as important research areas that apply
rtificial intelligence and machine learning to analyse complex systems [26,83,115]. The fields respectively aim to identify
ausal relationships and discover equations that can be used to predict the behaviour of the system, including the effects
f interventions.
In this paper, we have reviewed the state-of-the-art in both fields and discussed their respective approaches and

echniques. Causal discovery aims to discover the qualitative cause-and-effect relationships between the variables in a
ystem. In order to achieve this task using non-experimental data, causal discovery employs certain enabling assumptions
see Section 2). Among these assumptions is that the data-generating process can be described by a structural causal model
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Fig. 25. Snapshot of potential vorticity in two different simulations: Top = Eddy (mostly isotropic turbulence), Bottom = Jet (some elongated
sharp features mixed with isotropic turbulence features). A, F: High-Resolution simulations; B, G: Coarse Resolution; C, H: Coarse Resolution with
physics-based parameterisations; D, I: Coarse Resolution with a Neural Network-based Dramatisation; E, J: Coarse Resolution with parameterisation
discovered with symbolic regression. The data-driven parameterisations are trained on eddy configuration, and only the equation-discovery lead to
robust generalisation in different regimes without retraining [521].

and the corresponding causal graph. Methods for causal discovery are manifold and can be partitioned into constraint-
based, score-based, asymmetry-based, and context-based methods. Data from the physical world typically comes in
the form of time series with autocorrelation and potentially non-stationary behaviour. Autocorrelation and potential
non-stationarity pose statistical challenges for many causal discovery methods as they are typically designed for i.i.d.
data. In addition, the true functional relationship between variables can be highly non-linear, and the variables can be
high-dimensional, both increasing model complexity and affecting the efficiency of causal discovery methods. All these
challenges are compounded by the fact that the data acquired from real-world processes are often far from ideal, with
problems such as missing data and inherent selection bias that might lead to the observed data not being representative
of the process underlying it. These and many other challenges are avenues for future research in causal discovery and
many of its sister fields, such as Bayesian networks and conditional independence testing, to name a few.

In equation discovery, the focus is on understanding the structure of a system by discovering equations, state variables
and laws that can be used to predict (and, more importantly, to understand) its behaviour (see Section 3). The main
techniques used in this field are symbolic regression, evolutionary algorithms, and deep learning. These methods offer
the potential to discover both linear and nonlinear equations but suffer from the need for large datasets and the difficulty
of finding accurate equations in complex systems. More relevant challenges have to do with identifiability issues and the
impossibility of evaluating the generality of the equations or even the criteria to select the most general ones. Broader
(and perhaps more philosophical) questions need to be addressed, such as compressibility or sparsity, confronted with
expressive power, the role of physical units and modularity, to name a few.

Thus, causality studies and equation inference approaches have synergistic goals. Both fields have made significant
advances in recent years and offer considerable promise for further research. In particular, techniques from both fields can
be combined to create hybrid models capable of uncovering causal relationships and equations. Additionally, developing
more efficient algorithms and better methods for dealing with the challenge of overfitting could lead to further progress
in both fields. More specifically, the question remains as to which current approaches provide stronger guarantees for the
uniqueness/equifinality of the discovered equation or inferred causal graph. This key aspect in the inferential discovery
of physical models should receive more attention in future research enterprises.

A wide range of case studies in many areas of interest in the physical sciences (neurosciences, Earth and climate
sciences, fluid mechanics) has illustrated the performance of causal discovery and equation discovery algorithms (see
Section 4). We noted that specific methods and techniques reside in particular fields and do not permeate to others,
mainly because of the needed assumptions and data characteristics. Yet, as has been the case for centuries, there is a
lack of transdisciplinary in science. Directly stemming from this review, it is evident that analysing complex systems
requires an inter/trans-disciplinary approach that combines method and domain expertise. Techniques from artificial
intelligence, machine learning, and control theory can be combined to better understand a system’s behaviour and make
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ccurate predictions. As such, future research in causal and equation discovery should consider the potential benefits
f a more integrative and fused approach to analysing complex systems. This is perhaps especially important for recent
evelopments designed for answering critical questions in specific areas but which, given their fundamental nature, have
wider appeal. For instance, the progress in the empirical inference of transfer operators in fluid mechanics or chemical
eaction pathways has unexplored implications in understanding the metastable dynamics of neuronal network responses.

Overall, the fields of causal discovery and equation discovery are rapidly advancing, and there is a growing synergy
etween them. Despite the remaining challenges, researchers have made great strides in uncovering the underlying
tructure of complex systems. With continued research and development, we can look forward to further advances in
oth fields and unlocking complex systems’ mysteries.
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