elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

HMI Design for Explainable Machine Learning Enhanced Risk Detection in Low-Altitude UAV Operations

Friedrich, Max und Küls, Jari und Findeisen, Marc und Peinecke, Niklas (2023) HMI Design for Explainable Machine Learning Enhanced Risk Detection in Low-Altitude UAV Operations. In: 42nd IEEE/AIAA Digital Avionics Systems Conference, DASC 2023. 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference, 2023-10-01 - 2023-10-05, Barcelona, Spanien. doi: 10.1109/DASC58513.2023.10311252. ISBN 979-835033357-2. ISSN 2155-7195.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Unmanned aerial vehicles (UAVs) are increasingly utilized in low-altitude urban airspace for various applications. However, operating UAVs in populated areas poses safety risks, including proximity to people and property, unauthorized flight, and collisions with obstacles or hazards such as wildfires. Safety systems like geo-fencing and collision avoidance systems can detect known, well-defined risks but fail to address real-time detection of unforeseen hazards. To tackle this challenge, the paper proposes using an onboard camera on the UAV to continuously scan the environment. The captured video is analyzed in real-time using machine learning (ML) to detect, locate and classify a limited set of common hazards, determine their severity, and reroute the UAV to ensure flight safety. In situations where autonomous rerouting is deemed too risky by the system, the remote pilot is alerted, provided with detailed information on the detected hazards including the camera imagery, and is thus enabled to make an informed decision. Here, understanding the ML-model's results and decisions is crucial for effective decision-making, yet ML-models are often opaque and difficult for humans to comprehend. To address this issue, the paper suggests integrating principles of explainable artificial intelligence (XAI) into the human-machine interface (HMI) design to enhance interpretability and make the ML-models transparent and comprehensible. Specifically, principles of Class Activation Mapping (CAM) and Layerwise Relevance Propagation (LRP) are combined with a hierarchical HMI to present the information to the remote pilot. The paper describes relevant XAI-principles for HMI design and develops methods to comprehensively display ML-based information to remote pilots. These display design principles are then applied and integrated into an HMI design framework for supervising multiple UAVs. The resulting XAI-display prototype is discussed, limitations are identified, and further research steps are outlined for implementing the ML-models and testing the HMI with subject matter experts.

elib-URL des Eintrags:https://elib.dlr.de/199808/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:HMI Design for Explainable Machine Learning Enhanced Risk Detection in Low-Altitude UAV Operations
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Friedrich, MaxMax.Friedrich (at) dlr.dehttps://orcid.org/0000-0002-7103-3753NICHT SPEZIFIZIERT
Küls, Jarijari.kuels (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Findeisen, Marcmarc.findeisen (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Peinecke, NiklasNiklas.Peinecke (at) dlr.dehttps://orcid.org/0000-0002-6683-2323NICHT SPEZIFIZIERT
Datum:2023
Erschienen in:42nd IEEE/AIAA Digital Avionics Systems Conference, DASC 2023
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1109/DASC58513.2023.10311252
ISSN:2155-7195
ISBN:979-835033357-2
Status:veröffentlicht
Stichwörter:Unmanned aerial vehicles, explainable artificial intelligence, human machine interface, risk visualization
Veranstaltungstitel:2023 IEEE/AIAA 42nd Digital Avionics Systems Conference
Veranstaltungsort:Barcelona, Spanien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:1 Oktober 2023
Veranstaltungsende:5 Oktober 2023
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Luftverkehr und Auswirkungen
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AI - Luftverkehr und Auswirkungen
DLR - Teilgebiet (Projekt, Vorhaben):L - Lufttransportbetrieb und Folgenabschätzung
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugführung > Unbemannte Luftfahrzeugsysteme
Institut für Flugführung > Pilotenassistenz
Hinterlegt von: Friedrich, Max
Hinterlegt am:28 Nov 2023 11:24
Letzte Änderung:24 Apr 2024 21:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.