Karmakar, Marc and Bhowmik, llyold and Dumitru, Octavian Corneliu and Datcu, Mihai (2023) Risce - An Explainable ML Chain for Practical Sustainable Agriculture. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 7183-7185. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, USA. doi: 10.1109/IGARSS52108.2023.10282452.
PDF
229kB |
Official URL: https://ieeexplore.ieee.org/document/10282452
Abstract
Knowledge systems in sustainable agriculture see a big gap with end users due to lack of easy-to-use interfaces with existing knowledge. Adding to the problem, decisions coming from black-box models are not understandable for most users. We try to bridge the gap with an integrated chain of explainable ML models to address the most useful applications in the agri-food industry. To make the integrated model available to users and help them draw benefits out of it, we also propose a novel idea of an explainable ML framework for interaction with human users. This human-in-the-loop approach makes ML models more trustworthy. End-users understand the output from ML models and also improve models with feedback. The application interface is also proposed to have features for multilingual communication among users to build communities. Feedback from communities help further refine ML models. The proposed system is named as Reusable Intelligent solution for Cultivation Enhancement (RISCE). In this article, we provide a demonstration of our system with an intrinsically explainable model for crop vigor analysis.
Item URL in elib: | https://elib.dlr.de/199734/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||
Title: | Risce - An Explainable ML Chain for Practical Sustainable Agriculture | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2023 | ||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10282452 | ||||||||||||||||||||
Page Range: | pp. 7183-7185 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | xAI, agriculture, crop analysis | ||||||||||||||||||||
Event Title: | IGARSS 2023 | ||||||||||||||||||||
Event Location: | Pasadena, USA | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 16 July 2023 | ||||||||||||||||||||
Event End Date: | 21 July 2023 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Dumitru, Corneliu Octavian | ||||||||||||||||||||
Deposited On: | 29 Nov 2023 13:12 | ||||||||||||||||||||
Last Modified: | 01 Sep 2024 03:00 |
Repository Staff Only: item control page