Karmakar, Marc und Bhowmik, llyold und Dumitru, Octavian Corneliu und Datcu, Mihai (2023) Risce - An Explainable ML Chain for Practical Sustainable Agriculture. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 7183-7185. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, USA. doi: 10.1109/IGARSS52108.2023.10282452.
PDF
229kB |
Offizielle URL: https://ieeexplore.ieee.org/document/10282452
Kurzfassung
Knowledge systems in sustainable agriculture see a big gap with end users due to lack of easy-to-use interfaces with existing knowledge. Adding to the problem, decisions coming from black-box models are not understandable for most users. We try to bridge the gap with an integrated chain of explainable ML models to address the most useful applications in the agri-food industry. To make the integrated model available to users and help them draw benefits out of it, we also propose a novel idea of an explainable ML framework for interaction with human users. This human-in-the-loop approach makes ML models more trustworthy. End-users understand the output from ML models and also improve models with feedback. The application interface is also proposed to have features for multilingual communication among users to build communities. Feedback from communities help further refine ML models. The proposed system is named as Reusable Intelligent solution for Cultivation Enhancement (RISCE). In this article, we provide a demonstration of our system with an intrinsically explainable model for crop vigor analysis.
elib-URL des Eintrags: | https://elib.dlr.de/199734/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Risce - An Explainable ML Chain for Practical Sustainable Agriculture | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2023 | ||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10282452 | ||||||||||||||||||||
Seitenbereich: | Seiten 7183-7185 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | xAI, agriculture, crop analysis | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2023 | ||||||||||||||||||||
Veranstaltungsort: | Pasadena, USA | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 16 Juli 2023 | ||||||||||||||||||||
Veranstaltungsende: | 21 Juli 2023 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Dumitru, Corneliu Octavian | ||||||||||||||||||||
Hinterlegt am: | 29 Nov 2023 13:12 | ||||||||||||||||||||
Letzte Änderung: | 01 Sep 2024 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags