Kondmann, Lukas (2023) Deep Learning for Time-Series Analysis of Optical Satellite Imagery. Dissertation, Technical University Munich.
PDF
29MB |
Official URL: https://mediatum.ub.tum.de/?id=1705991
Abstract
In this cumulative thesis, I cover four papers on time-series analysis of optical satellite imagery. The contribution is split into two parts. The first one introduces DENETHOR and DynamicEarthNet, two landmark datasets with high-quality ground truth data for agricultural monitoring and change detection. Second, I introduce SiROC and SemiSiROC, two methodological contributions to label-efficient change detection.
Item URL in elib: | https://elib.dlr.de/199713/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Document Type: | Thesis (Dissertation) | ||||||||
Title: | Deep Learning for Time-Series Analysis of Optical Satellite Imagery | ||||||||
Authors: |
| ||||||||
Date: | 24 April 2023 | ||||||||
Refereed publication: | No | ||||||||
Open Access: | Yes | ||||||||
Gold Open Access: | No | ||||||||
In SCOPUS: | No | ||||||||
In ISI Web of Science: | No | ||||||||
Number of Pages: | 140 | ||||||||
Status: | Published | ||||||||
Keywords: | Change detection, agricultural monitoring | ||||||||
Institution: | Technical University Munich | ||||||||
Department: | TUM School of Engineering and Design | ||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||
HGF - Program: | Space | ||||||||
HGF - Program Themes: | Earth Observation | ||||||||
DLR - Research area: | Raumfahrt | ||||||||
DLR - Program: | R EO - Earth Observation | ||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||
Location: | Oberpfaffenhofen | ||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||
Deposited By: | Camero, Dr Andres | ||||||||
Deposited On: | 28 Nov 2023 12:47 | ||||||||
Last Modified: | 28 Nov 2023 12:47 |
Repository Staff Only: item control page