elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

A Novel Decoupled Model Predictive Control-Based Motion Cueing Algorithm for Driving Simulators

Asadi, Houshyar and Bellmann, Tobias and Chalak Qazani, Mohammad Reza and Mohamed, Shady and Lim, Chee Peng and Nahavandi, Saeid (2023) A Novel Decoupled Model Predictive Control-Based Motion Cueing Algorithm for Driving Simulators. IEEE Transactions on Vehicular Technology. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TVT.2023.3237317. ISSN 0018-9545.

Full text not available from this repository.

Official URL: https://ieeexplore.ieee.org/document/10018197

Abstract

The motion cueing algorithm (MCA) is used to reproduce the driving/flying motion sensation of the real land or air vehicles for the users of motion simulator. Highly accurate MCAs are required for the motion simulators to create realistic sensation for the simulator users, otherwise, they might cause motion sickness and user discomfort. Model predictive control (MPC) is a popular technique in development of the high-fidelity MCAs as it is able to consider the motion sensation as well as the workspace constraints of the simulator platform. Tilt coordination in MCA is in charge of creating sustained linear acceleration feeling through tilting the platform cabin and exploiting gravitational acceleration under human motion threshold, to not allow the user to perceive this as a rotational motion. However, the existing MPC-based MCAs have not considered the rate limit to constrain the tilt motion under human threshold which causes violations of the rotational sensation threshold during generating sustained acceleration feeling. Instead, some researchers increase the penalty weights of rotational motions in order to slow down rotational motions. Using this strategy slows down all the simulator rotational motions not only the ones coming from tilt coordination, to generate sustained acceleration feeling, but also from rotational channel (due to real vehicle rotation) which causes motion sensation error and consequently motion sickness. Therefore, as the existing MPC-based MCAs cannot differentiate the rotations of tilt coordination channel (due to sustained acceleration feeling generation), from rotational channel (due to vehicle rotational motions), they are not able to produce accurate rotational motion sensations because of insufficient rotational motions. In this research, a novel decoupled MPC-based MCA is developed to systematically address the issues related to the existing MPC-based MCAs, in terms of inaccurate motion generation, by redesigning the MPC-based MCA using a series of vestibular system-based MPC models and considering tilt rate limit in tilt coordination. The simulation study using MATLAB software is used to verify and validate the proposed MCA compared to the existing MCAs. The proposed decoupled MPC-based MCA is able to generate accurate motion cues compared to those of the existing MCAs.

Item URL in elib:https://elib.dlr.de/199607/
Document Type:Article
Title:A Novel Decoupled Model Predictive Control-Based Motion Cueing Algorithm for Driving Simulators
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Asadi, HoushyarInstitute for Intelligent Systems Research and Innovation Deakin Universityhttps://orcid.org/0000-0002-3620-8693UNSPECIFIED
Bellmann, TobiasUNSPECIFIEDhttps://orcid.org/0000-0002-5897-6191UNSPECIFIED
Chalak Qazani, Mohammad RezaInstitute for Intelligent Systems Research and Innovation Deakin Universityhttps://orcid.org/0000-0003-1839-029XUNSPECIFIED
Mohamed, ShadyInstitute for Intelligent Systems Research and Innovation Deakin UniversityUNSPECIFIEDUNSPECIFIED
Lim, Chee PengInstitute for Intelligent Systems Research and Innovation Deakin UniversityUNSPECIFIEDUNSPECIFIED
Nahavandi, SaeidInstitute for Intelligent Systems Research and Innovation Deakin Universityhttps://orcid.org/0000-0002-0360-5270UNSPECIFIED
Date:June 2023
Journal or Publication Title:IEEE Transactions on Vehicular Technology
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:Yes
DOI:10.1109/TVT.2023.3237317
Publisher:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0018-9545
Status:Published
Keywords:Motion Cueing, Driving Simulation, MPC
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Robotics
DLR - Research area:Raumfahrt
DLR - Program:R RO - Robotics
DLR - Research theme (Project):R - High Dynamic Systems
Location: Oberpfaffenhofen
Institutes and Institutions:Institute of System Dynamics and Control
Deposited By: Bellmann, Tobias
Deposited On:27 Nov 2023 09:40
Last Modified:04 Dec 2023 11:12

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.