Wang, Yi und Albrecht, Conrad M und Braham, Nassim Ait Ali und Liu, Chenying und Xiong, Zhitong und Zhu, Xiao Xiang (2024) Decoupling Common and Unique Representations for Multimodal Self-supervised Learning. In: 18th European Conference on Computer Vision, ECCV 2024, Seiten 1-19. 2024 ECCV, 2024-09-29 - 2024-10-04, Milan, Italy.
PDF
- Nur DLR-intern zugänglich bis Oktober 2025
903kB | |
PDF
411kB |
Offizielle URL: https://eccv2024.ecva.net/virtual/2024/poster/1631
Kurzfassung
The increasing availability of multi-sensor data sparks wide interest in multimodal self-supervised learning. However, most existing approaches learn only common representations across modalities while ignoring intra-modal training and modality-unique representations. We propose Decoupling Common and Unique Representations (DeCUR), a simple yet effective method for multimodal self-supervised learning. By distinguishing inter- and intra-modal embeddings through multimodal redundancy reduction, DeCUR can integrate complementary information across different modalities. We evaluate DeCUR in three common multimodal scenarios (radar-optical, RGB-elevation, and RGB-depth), and demonstrate its consistent improvement regardless of architectures and for both multimodal and modality-missing settings. With thorough experiments and comprehensive analysis, we hope this work can provide valuable insights and raise more interest in researching the hidden relationships of multimodal representations.
elib-URL des Eintrags: | https://elib.dlr.de/199498/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||||||||||||||
Titel: | Decoupling Common and Unique Representations for Multimodal Self-supervised Learning | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||||||||||
Erschienen in: | 18th European Conference on Computer Vision, ECCV 2024 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1-19 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | self-supervised learning, multi-modal data fusion, SAR, optical, Sentinel-1, Sentinel-2, explainable AI | ||||||||||||||||||||||||||||
Veranstaltungstitel: | 2024 ECCV | ||||||||||||||||||||||||||||
Veranstaltungsort: | Milan, Italy | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 29 September 2024 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 4 Oktober 2024 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - Optische Fernerkundung, R - SAR-Methoden | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||
Hinterlegt von: | Albrecht, Conrad M | ||||||||||||||||||||||||||||
Hinterlegt am: | 07 Okt 2024 10:18 | ||||||||||||||||||||||||||||
Letzte Änderung: | 11 Okt 2024 13:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags