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A Algorithm

Algorithm 1: PyTorch-style pseudocode for DeCUR.
# f1, f2: encoder networks
# BN, N, K: batch normalization, batch size and embedding dimension
# on_diag, off_diag: on- and off-diagonal elements of a matrix

# loss function for common and intra-modal
def loss_c(C, lambda):

l_on = (on_diag(C)-1).pow(2).sum()
l_off = off_diag(C).pow(2).sum()
return l_on + lambda x l_off

# loss function for unique
def loss_u(C, lambda):

l_on = on_diag(C).pow(2).sum()
l_off = off_diag(C).pow(2).sum()
return l_on + lambda x l_off

# training
for x1,x2 in loader: # load a batch pairs

(x1_1, x1_2), (x2_1, x2_2) = augment1(x1), augment2(x2)
# compute embeddings and normalize
z1_1, z1_2 = BN(f1(x1_1)), BN(f1(x1_2))
z2_1, z2_2 = BN(f2(x2_1)), BN(f2(x2_2))
# cross-correlation matrices
C1 = z1_1.T @ z1_2 / N # KxK
C2 = z2_1.T @ z2_2 / N # KxK
Cm = z1_1.T @ z2_1 / N # KxK
Cc = Cm[:K_c,:K_c] # KcxKc
Cu = Cm[K_c:,K_c:] # KuxKu
# calculate losses
L1 = loss_c(C1,lmb1) # intra-modal M1
L2 = loss_c(C2,lmb2) # intra-modal M2
Lc = loss_c(Cc,lmbc) # cross-m. common
Lu = loss_u(Cu,lmbu) # cross-m. unique
loss = L1 + L2 + Lc + Lu # total loss
# optimization
loss.backward()
optimizer.step()

B Implementation Details

B.1 Pretraining

SAR-optical pretraining SSL4EO-S12 [10] dataset is used for SAR-optical
pretraining: Sentinel-1 GRD (2 bands VV and VH) and Sentinel-2 L1C (13 mul-
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tispectral bands). The pixel resolution is united to 10 meters. We compress and
normalize the optical data to 8-bit by band-wise mean and standard deviation;
for SAR data, we cut out 2% outliers for each image and normalize it by band-
wise mean and standard deviation.

Standard ResNet50 is used as the encoder backbone, of which the first layer
is modified to fit the input channel number. The projector is a 3-layer MLP, of
which the first two layers include Linear, BactchNorm and ReLU, and the last
one includes only a linear layer. We adopt two residual deformable attention
(RDA) modules after the last two blocks of the ResNet encoder. Following [13],
for the first RDA module, we use a feature map 14×14, 8 heads with 128 channels
each, 4 groups, stride 2, and kernel size 5; for the second RDA module, we use
a feature map 7×7, 16 heads with 128 channels each, 8 groups, stride 1, and
kernel size 3.

We use the LARS [15] optimizer with weight decay 1e-6 and momentum
0.9. We use a learning rate of 0.2 for the weights and 0.0048 for the biases
and batch normalization parameters. We reduce the learning rate using a cosine
decay schedule [7] (no warm-up periods). The biases and batch normalization
parameters are excluded from LARS adaptation and weight decay.

RGB-DEM pretraining The training split of the GeoNRW [1] dataset is
used for RGB-DEM pretraining: aerial orthophoto (3 bands RGB) and lidar-
derived digital elevation model (1 band height). The pixel resolution is 1 meter.
We use standard ResNet50 without modifying the input layer (i.e., we dupli-
cate the DEM image to 3 channels). Other model architecture and optimization
protocols are the same as SAR-optical pretraining.

RGB-depth pretraining SUN-RGBD [8] dataset is used for RGB-depth
pretraining: indoor RGB and depth images. Following [16], we preprocess the
depth images to HHA format [4]. We use standard ResNet50 and MiT-B2/B5
from SegFormer as the backbones. For segformer backbones, we use AdamW
optimizer and a learning rate of 1e-4.

Data augmentations We follow common augmentations in the self-supervision
literature [3] for optical and RGB images (resized crop, color jitter, grayscale,
Gaussian blur, horizontal and vertical flip, color drop, solarize), and remove
infeasible ones for special modalities. Specifically, for SAR, we use random resized
crop, grayscale, Gaussian blur, and horizontal and vertical flip; for DEM images,
we use random resized crop and horizontal and vertical flip; for HHA images, we
use random resized crop and horizontal flip.

B.2 Transfer learning

SAR-optical transfer learning We evaluate SAR-optical pretraining on
the BigEarthNet-MM [9] dataset for the multi-label scene classification task.
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We compress and normalize the optical images to 8-bit by band-wise mean and
standard deviation; for SAR images, we cut out 2% outliers for each image and
normalize it by band-wise mean and standard deviation. As the optical data of
BigEarthNet-MM is Sentinel-2 L2A product (12 bands), we insert one empty
band to match the pretrained weights (13 bands). We use common data aug-
mentations including RandomResizedCrop (scale 0.8 to 1) and RandomHorizon-
talFlip.

Standard ResNet50 is used as the encoder backbone for each modality, of
which the first layer is modified to fit the input channel number, and the last
layer is modified as an identity layer. The encoded features are concatenated,
followed by a fully connected layer outputting the class logits. The encoders
are initialized from the pretrained weights. For linear classification, the encoder
weights are frozen and only the last classification layer is trainable; for fine-
tuning, all weights are trained.

We optimize MultiLabelSoftMarginLoss with batch size 256 for 100 epochs.
We use the SGD optimizer with a weight decay of 0 and momentum of 0.9. The
learning rate is 0.5 for linear classification, and 0.05 for fine-tuning. We reduce
the learning rate by factor 10 at 60 and 80 epochs.

RGB-DEM transfer learning We evaluate RGB-DEM pretraining on the
GeoNRW dataset for the semantic segmentation task. We use common data
augmentations including RandomResizedCrop (scale 0.2 to 1) and RandomHor-
izontalFlip.

Fully convolutional networks (FCN) [6] with standard ResNet50 backbone
for each modality are used as the segmentation model. The last three feature
maps from both modalities are concatenated and upsampled to the input size.
They are further followed by 1x1 convolution outputting three segmentation
maps, which are added together to form the final output map. The encoders
are initialized from the pretrained weights. For linear classification, the encoder
weights are frozen; for fine-tuning, all weights are trainable.

We optimize CrossEntropyLoss with batch size 256 for 30 epochs. We use
the AdamW optimizer with a weight decay of 0.01. The learning rate is 0.0001
for both linear classification and fine-tuning.

RGB-depth transfer learning We evaluate RGB-depth pretraining on
SUN-RGBD and NYU-Depth v2 datasets for the semantic segmentation task.
We use common data augmentations including RandomResizedCrop and Ran-
domHorizontalFlip.

FCN with ResNet50 backbones is used as the segmentation model for single-
modal RGB semantic segmentation. We optimize CrossEntropyLoss with batch
size 8 for 40k iterations. We use the SGD optimizer with weight decay 1e-5. The
learning rate is 0.01 with polynomial decay for fine-tuning.

CMX [16] with segformer [14] backbones are used as the segmentation model
for RGBD semantic segmentation. We follow the same settings of CMX for SUN-
RGBD and NYU-depth v2 datasets.
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C Additional results

Additional results with ViT backbones To complement experiments
with ResNet backbones in the main paper, we provide in Tab. 1 additional
frozen-encoder results with ViT backbones on SAR-optical and RGB-DEM sce-
narios. The consistent improvement of DeCUR over SimCLR verifies again its
architecture-agnostic property.

Table 1: Additional frozen-encoder results with ViT backbones.

Backbone BigEarthNet-SAR-1% GeoNRW-RGB-1%
Rand. Init. ViT-S/16 57.7 13.2
SimCLR ViT-S/16 73.9 35.1
DeCUR (ours) ViT-S/16 75.8 35.6

Additional results with attention mechanisms To further support the
benefits of adopting deformable attention, we provide in Tab. 2 additional frozen-
encoder results with different attention designs. Specifically, our design is better
than the popular convolutional block attention module (CBAM) [11]. In ad-
dition, we also explore the possibility of cross-modal attention: taking queries
from one modality, and keys and values from another modality, which results
in performance decreasing. While this cross-attention tends to be beneficial in
supervised learning [2,5], The reason could be a potential information leak that
hurts the self-supervised pretraining task.

Table 2: Additional frozen-encoder results with different attention designs. DA means
deformable attention without residual connection; Cross DA represents cross-modal
deformation attention; RDA represents deformable attention with residual connection.

BigEarthNet-SAR-1% GeoNRW-RGB-1%
DA [12] 73.5 30.2
Cross DA 72.5 29.6
CBAM [11] 73.1 31.0
RDA (ours) 74.4 32.2

D Explainability analysis

D.1 Algorithm

For a better understanding of our explainability implementation, we provide
united pseudocode of 1) cross-modal representation alignment, 2) t-SNE repre-
sentation visualization, 3) spatial and spectral saliency statistics based on Grad-
Cam and Integrated Gradients, in Algorithm 2.
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Algorithm 2: Pseudocode for DeCUR explainability.
# f1,f2: encoder networks
# BN: batch normalization
# N,K: batch size and embedding dimension
# on_diag: on-diagonal elements of a matrix
# IG: Integrated Gradients

# 1.Cross-modal representation alignment
def alignment_histogram(z1, z2):

C = z1.T @ z2 / N # KxK
losses = (on_diag(C)-1).pow(2) # Kx1
return histogram(losses, range=(0,1))

# 2.Representation visualization
def tsne_vis(z1, z2):

feature = torch.cat((z1,z2),-1) # Nx2K
feature = feature.permute(1,0) # 2KxN
return tsne(feature, n_components=2)

# 3.Spatial saliency visualization
def gradcam_vis(x1):

z1 = BN(f1(x1)) # NxK
z1_c = z1[:,:Kc].mean(dim=-1) # Nx1
z1_u = z1[:,Kc:].mean(dim=-1) # Nx1
out1 = torch.cat((z1_c,z1_u),-1) # Nx2
gc1 = LayerGradCam(f1, f1.last_conv2)
attr1_c = gc1.attribute(x1,target=0) # Nx7x7
attr1_u = gc1.attribute(x1,target=1) # Nx7x7
return upsamp(attr1_c), upsamp(attr1_u)
# Nx224x224, Nx224x224

# 4.Spatial saliency statistics
def gradcam_stat(x1,x2):

att1_c, att1_u = gradcam_vis(x1)
att2_c, att2_u = gradcam_vis(x2)
mul_c = norm(att1_c) x norm(att2_c) # Nx1
mul_u = norm(att1_u) x norm(att2_u) # Nx1
return mul_c, mul_u

# 5.Spectral saliency statistics
def IG_stat(x1):

# define "IG_vis" similar to gradcam
att1_c, att1_u = IG_vis(x1) # NxCx224x224
imp_c = att1_c.mean(dim=(0,2,3)) # NxC
imp_u = att1_u.mean(dim=(0,2,3)) # NxC
return imp_c, imp_u
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D.2 Additional examples

Below we show some additional explainability examples. Note that the decou-
pling and matching results depend on the samples. Specifically, some images
have a strong overlap between modalities (potentially more common dimensions)
while others tend to be more orthogonal (potentially more unique dimensions,
decoupling helps more).

Cross-modal alignment histograms See Figure 1.

t-SNE representation visualization See Figure 2.
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Fig. 1: Cross-modal representation alignment histograms of 4 batches of samples. Left:
SAR-optical; right: RGB-DEM.
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Fig. 2: t-SNE representation visualization of 4 batches of samples. Left: SAR-optical;
right: RGB-DEM.
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