elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Accessibility | Contact | Deutsch
Fontsize: [-] Text [+]

Constrained Tensor Decompositions for SAR Data: Agricultural Polarimetric Time Series Analysis

Basargin, Nikita and Alonso-Gonzalez, Alberto and Hajnsek, Irena (2023) Constrained Tensor Decompositions for SAR Data: Agricultural Polarimetric Time Series Analysis. IEEE Transactions on Geoscience and Remote Sensing. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2023.3331599. ISSN 0196-2892.

[img] PDF - Published version
7MB

Official URL: https://ieeexplore.ieee.org/document/10313300

Abstract

Tensor decompositions are a powerful tool for multidimensional data analysis, interpretation, and signal processing. This work develops a constrained tensor decomposition framework for complex multidimensional Synthetic Aperture Radar (SAR) data. The framework generalizes the Canonical Polyadic (CP) decomposition by formulating it as an optimization problem and allows precise control over the shape and properties of the output factors. The implementation supports complex tensors, automatic differentiation, different loss functions, and optimizers. We discuss the importance of constraints for physical validity, interpretability, and uniqueness of the decomposition results. To illustrate the framework, we formulate a polarimetric time series decomposition and apply it to data acquired over agricultural areas to analyze the development of four crop types at X, C, and L bands over the period of twelve weeks. The obtained temporal factors describe the changes in the crops in a compact way and show a correlation to certain crop parameters. We extend the existing polarimetric time series change analysis with the decomposition to show the changes in more detail and provide an interpretation through the polarimetric factors. The decomposition framework is extensible and promising for joint information extraction from multidimensional SAR data.

Item URL in elib:https://elib.dlr.de/199437/
Document Type:Article
Title:Constrained Tensor Decompositions for SAR Data: Agricultural Polarimetric Time Series Analysis
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Basargin, NikitaUNSPECIFIEDhttps://orcid.org/0000-0002-9173-6448UNSPECIFIED
Alonso-Gonzalez, AlbertoUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Hajnsek, IrenaUNSPECIFIEDhttps://orcid.org/0000-0002-0926-3283UNSPECIFIED
Date:November 2023
Journal or Publication Title:IEEE Transactions on Geoscience and Remote Sensing
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:Yes
DOI:10.1109/TGRS.2023.3331599
Publisher:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:Published
Keywords:Tensor Decomposition, Constraints, Synthetic Aperture Radar, Polarimetric SAR, Time Series, Optimization, Agriculture
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Polarimetric SAR Interferometry HR
Location: Oberpfaffenhofen
Institutes and Institutions:Microwaves and Radar Institute > Radar Concepts
Deposited By: Basargin, Nikita
Deposited On:20 Nov 2023 13:22
Last Modified:17 Feb 2025 12:30

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
OpenAIRE Validator logo electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.