Assenmacher, Oliver and Rüttgers, Alexander and Petrarolo, Anna and Gelain, Riccardo (2024) Semantic Image Segmentation of Hybrid Rocket Fuel Combustion Data using Convolutional Neural Networks. In: AIAA SciTech 2024 Forum. SciTech Forum 2024, 2024-01-08 - 2024-01-12, Orlando, USA. doi: 10.2514/6.2024-0799. ISBN 978-162410711-5.
PDF
- Only accessible within DLR until 1 January 2025
1MB |
Abstract
Semantic image segmentation using a convolutional neural network was applied to image data of hybrid rocket combustion tests to accurately compute the fuel regression rate over time. Combustion tests with different paraffin-based fuels have been performed at the German Aerospace Center (DLR) and have been captured with a high-speed video camera leading to large image datasets. The main task to allow for the further experimental evaluation with an optical approach is to create binary masks of the solid fuel. For this purpose, a neural network model to segment 120,000 images is presented and is justified by a thorough analysis. This analysis includes the generalization capabilities of the neural network to new image data and an analysis of the model uncertainty. As a result, time-dependent regression rates are computed for the combustion tests over a sequence of different spatial positions. This allows for a detailed time-dependent and spatial comparison of the different experimental configurations and gives valuable insights into phenomena that appear during combustion.
Item URL in elib: | https://elib.dlr.de/199279/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Semantic Image Segmentation of Hybrid Rocket Fuel Combustion Data using Convolutional Neural Networks | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2024 | ||||||||||||||||||||
Journal or Publication Title: | AIAA SciTech 2024 Forum | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.2514/6.2024-0799 | ||||||||||||||||||||
ISBN: | 978-162410711-5 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Image Segmentation, Hybrid Rockets, Machine Learning, Computer Vision | ||||||||||||||||||||
Event Title: | SciTech Forum 2024 | ||||||||||||||||||||
Event Location: | Orlando, USA | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 8 January 2024 | ||||||||||||||||||||
Event End Date: | 12 January 2024 | ||||||||||||||||||||
Organizer: | American Institute of Aeronautics and Astronautics | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Space Transportation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R RP - Space Transportation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Project Big Data Platform [RP], R - HPDA basic software | ||||||||||||||||||||
Location: | Köln-Porz | ||||||||||||||||||||
Institutes and Institutions: | Institute of Software Technology Institute of Software Technology > High-Performance Computing Institute of Space Propulsion > Spacecraft and Orbital Propulsion | ||||||||||||||||||||
Deposited By: | Assenmacher, Oliver | ||||||||||||||||||||
Deposited On: | 30 Nov 2023 15:11 | ||||||||||||||||||||
Last Modified: | 22 May 2024 09:08 |
Repository Staff Only: item control page