elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Exploiting the Quantum Advantage for Satellite Image Processing: Review and Assessment

Otgonbaatar, Soronzonbold und Kranzlmüller, Dieter (2024) Exploiting the Quantum Advantage for Satellite Image Processing: Review and Assessment. IEEE Transactions on Quantum Engineering. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TQE.2023.3338970. ISSN 2689-1808.

[img] PDF - Preprintversion (eingereichte Entwurfsversion)
460kB

Kurzfassung

This article examines the current status of quantum computing in Earth observation (EO) and satellite imagery. We analyze the potential limitations and applications of quantum learning models when dealing with satellite data, considering the persistent challenges of profiting from quantum advantage and finding the optimal sharing between high-performance computing (HPC) and quantum computing (QC). We then assess some parameterized quantum circuit models transpiled into a Clifford+T universal gate set. The T-gates shed light on the quantum resources required to deploy quantum models, either on an HPC system or several QC systems. In particular, if the T-gates cannot be simulated efficiently on an HPC system, we can apply a quantum computer and its computational power over conventional techniques. Our quantum resource estimation showed that quantum machine learning (QML) models, with a sufficient number of T-gates, provide the quantum advantage if and only if they generalize on unseen data points better than their classical counterparts deployed on the HPC system and they break the symmetry in their weights at each learning iteration like in conventional deep neural networks. We also estimated the quantum resources required for some QML models as an initial innovation. Lastly, we defined the optimal sharing between an HPC+QC system for executing QML models for hyperspectral satellite images. These are a unique dataset compared to other satellite images since they have a limited number of input qubits and a small number of labeled benchmark images, making them less challenging to deploy on quantum computers.

elib-URL des Eintrags:https://elib.dlr.de/199189/
Dokumentart:Zeitschriftenbeitrag
Titel:Exploiting the Quantum Advantage for Satellite Image Processing: Review and Assessment
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Otgonbaatar, SoronzonboldSoronzonbold.Otgonbaatar (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kranzlmüller, Dieterkranzlmueller (at) ifi.lmu.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2 Januar 2024
Erschienen in:IEEE Transactions on Quantum Engineering
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Nein
In ISI Web of Science:Ja
DOI:10.1109/TQE.2023.3338970
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:2689-1808
Status:veröffentlicht
Stichwörter:quantum computing, quantum machine learning, quantum artificial intelligence, earth observation, remote sensing
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Otgonbaatar, Soronzonbold
Hinterlegt am:15 Nov 2023 14:14
Letzte Änderung:22 Okt 2024 04:18

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.