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ABSTRACT This article examines the current status of quantum computing in Earth observation (EO) and
satellite imagery. We analyze the potential limitations and applications of quantum learning models when
dealing with satellite data, considering the persistent challenges of profiting from quantum advantage and
finding the optimal sharing between high-performance computing (HPC) and quantum computing (QC). We
then assess some parameterized quantum circuit models transpiled into a Clifford+T universal gate set. The
T-gates shed light on the quantum resources required to deploy quantum models, either on an HPC system
or several QC systems. In particular, if the T-gates cannot be simulated efficiently on an HPC system, we
can apply a quantum computer and its computational power over conventional techniques. Our quantum
resource estimation showed that quantum machine learning (QML) models, with a sufficient number of
T-gates, provide the quantum advantage if and only if they generalize on unseen data points better than
their classical counterparts deployed on the HPC system and they break the symmetry in their weights at
each learning iteration like in conventional deep neural networks. We also estimated the quantum resources
required for some QML models as an initial innovation. Lastly, we defined the optimal sharing between an
HPC+QC system for executing QML models for hyperspectral satellite images. These are a unique dataset
compared to other satellite images since they have a limited number of input qubits and a small number of
labeled benchmark images, making them less challenging to deploy on quantum computers.

INDEX TERMS Earth observation, hyperspectral images, image classification, quantum machine learning,
quantum computers, quantum resource estimation, remote sensing.

I. INTRODUCTION
A. WHY QUANTUM COMPUTING FOR EARTH
OBSERVATION?

EARTH observation (EO) methodologies tackle opti-
mization and artificial intelligence (AI) problems in-

volving big datasets obtained from instruments mounted on
space-borne and airborne platforms. Some optimization and
AI problems combined with big EO datasets are intractable
computational problems for conventional high-performance
computing (HPC) systems. In addition, EO datasets them-
selves are complex heterogeneous image datasets, compared
with conventional red-green-blue (RGB) images, character-
ized by so-called 4V features comprising volume, variety, ve-
locity, and veracity [1]; here, volume refers to big EO datasets
(e.g., Terabytes of data per day collected, for instance, by the
European Space Agency), variety refers to distinct spectral

data such as multispectral, and hyperspectral pixel data,
velocity refers to the speed of change on the Earth’s surface,
and veracity refers to imperfect datasets such as noisy images
or remotely-sensed images partly covered by clouds [2]. In
general, EO problems also include calibration and integer
optimization problems in synthetic aperture radar (SAR)
applications [3], [4], a Bayesian paradigm (e.g., Gaussian
processes) for retrieving physical parameters from remotely-
sensed datasets [5], [6], uncertainty estimates for EO pre-
dictions [7], solving partial differential equations (PDEs) for
climate modeling and digital twin Earth paradigms [8], and
identifying objects on the Earth’s surface [9]. Furthermore,
some computational problems like AI training architectures
are computationally expensive and inherently intractable
problems or NP-hard problems (see Fig. 1) [10]; Non-
deterministic (NP) polynomial problems are computational
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problems where there are no known efficient commonly-used
algorithms for finding their solutions in a reasonable poly-
nomial time (i.e. a polynomial number of steps) but can be
verified in a polynomial time given their solutions, and NP-
hard problems are computational problems harder than NP
problems. On the other hand, quantum machines harnessing
quantum physics phenomena like entanglement can solve
some challenging problems faster and more efficiently than
their counterpart conventional machines ranging from integer
optimization problems [11]–[13] to AI techniques [14]–[18]
and PDEs, [19], [20], and even quantum-inspired algorithms
for solving PDEs [21]. Thus, quantum algorithms’ computa-
tional advantages (or quantum advantage) over conventional
algorithms inspire enough to examine and identify compu-
tationally intractable problems with EO methodologies and
hard EO datasets for near- and far-term quantum machines.

B. DO WE REALLY NEED QUANTUM MACHINES?
Quantum machines can be generally divided into three fam-
ilies comprising quantum annealers [22], quantum simu-
lators [23], [24], and universal quantum computers [25].
These quantum machines promise computational advantage
for computing notoriously difficult problems over conven-
tional computers according to computational complexity
theorems/conjectures [26], [27]; computational complexity
theorems draw boundaries between computational problems
according to their hardness for finding their solutions (see
Fig. 1) [10]. At the moment, quantum machines are designed
to tackle specific forms and kinds of intractable computa-
tional problems, e.g., quantum annealers for quadratic uncon-
strained binary optimization (QUBO) problems or simulating
the Ising Hamiltonian [11], and quantum simulators for mim-
icking some physical Hamiltonian [28], [29]. Research com-
munities ranging from high energy physics [24], condensed-
matter physics [29], AI [15] to EO [30] are in the exploration
phase of identifying and investigating their hard problems
for quantum platforms. Furthermore, classical computational
methods for intractable computational problems reach their
limitations and potential accuracy due to the classical com-
putational resource required and the complexity of both EO
challenges and datasets. As stated earlier, some computa-
tional techniques are intractable problems on conventional
machines and computationally expensive, even on the HPC
system. Thus, to go beyond current computational methods
integrated with large-scale datasets to find a better solution
and utilize low computational cost, it is inevitable to examine
and identify computationally demanding problems in EO ap-
plications for novel near- and long-term quantum machines.
More importantly, gaining insight into programming these
novel computing machines and their potential advantages and
imperfections for computational problems is vital.

C. STATE OF THE ART OF QUANTUM COMPUTING FOR
EARTH OBSERVATION
Quantum computing is a novel computing paradigm that
promises to find solutions to some intractable computational
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FIGURE 1. The computational complexity conjecture draws boundaries
between computational problems according to their hardness based on the
required classical and quantum computational resources. In particular, the
computational problem denoted by the green star is easy to solve for both
quantum machines and classical computers, the computational problem
denoted by the orange star is easy for quantum machines but hard for
classical machines, and the computational problem denoted by the black star
is hard for classical computers. Still, no known efficient quantum algorithmic
approaches exist for quantum machines.

problems more efficiently and faster by exploiting quantum
superposition and entanglement than conventional comput-
ing techniques if and only if one considers ideal quantum
complexity measures without overhead considerations like
a distillation of Toffoli gates in the real quantum machines,
e.g., the classical versions of the Toffoli gates are transistors
in a conventional computer [31]. Quantum machines are
a kind of computer constructed using the primitives of a
quantum computing method, such as quantum bits (qubits)
and quantum gates, in contrast to traditional classical bits and
transistors. Digital quantum machines can be decomposed
into three layers [32]:

1) a quantum state preparation or a quantum data encod-
ing layer,

2) a quantum unitary evolution or a parametrized quan-
tum gate layer,

3) a quantum measurement layer.
For gaining insight into computing EO problems involving
big datasets on quantum machines, some studies already
exist for processing a variety of EO datasets to tackle EO
challenges using hybrid classical-quantum approaches (see
Fig. 2); hybrid classical-quantum approaches are exchange-
able with quantum artificial intelligence (QAI) and quantum
machine learning (QML). A variety of datasets includes
hyperspectral, multispectral, and polarimetric EO images.

1) Earth observation images
We can generalize that EO images are third-order tensors
regardless of a variety. Furthermore, a hyperspectral image is
a remotely-sensed image denoted by RI×J×K where I and
J are its spatial dimensionality, and K means hundreds of
its narrow-spaced spectral bands (or features), e.g., the Pavia
University hyperspectral image described by R610×340×103

tensor. Multispectral images are a third-order tensor RI×J×K

with at most K = 12 spectral bands. The main difference
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FIGURE 2. A hybrid classical-quantum approach for computational and machine learning tasks. A quantum layer includes implicitly quantum data encoding,
parametrized quantum gates, and quantum measurement layers.

between them is the spectral bands’ number and spacing. In
contrast, polarimetric images are characterized by the scat-
tering property S of ground targets; each pixel is described
by a 2 × 2 scattering matrix but not by spectral bands as
in hyperspectral and multispectral images. Hence, we could
assume that polarimetric images have K = 3 informative
features if the scattering matrix is symmetric and K = 4
informative features otherwise (see Figure 3) [33].

2) Quantum machine learning for Earth observation images

Climate AI tasks involve analyzing satellite images that
consist of thousands of pixels and hundreds of spectral
bands. For example, Eurosat multispectral images have a
size of 64 × 64 pixels and 12 spectral bands, which can
be represented as R64×64×12 [34]. In contrast, the digital
quantum machines currently available on the market have
less than a hundred noisy qubits and around depth-five of
faulty quantum gates [35]. Therefore, the main challenge
is to embed satellite images in a quantum data encoding
layer, regardless of the size of quantum machines and their
quantum errors. To address this challenge, the authors of the
articles [36]–[40] proposed and utilized a two-level embed-
ding scheme. This scheme comprises a classical layer for
dimensionality reduction and a quantum data encoding layer
for dimensionally-reduced images. In other words, they used
a hybrid classical-quantum approach, embedding classical
datasets in a quantum data encoding layer and optimizing
a parametrized quantum gate layer of digital quantum com-
puters with the help of a conventional classical computer.
However, the Eurosat dataset they used is a large dataset con-
sisting of low-dimensional and easy-to-classify images and
thus has low veracity. Most EO datasets, on the other hand,
are small datasets containing high-dimensional and hard-to-
classify images or high veracity images. For example, the
multispectral UC Merced Land Use dataset has a size of
245 × 245 pixels and 3 spectral bands, which can be rep-
resented as R245×245×3 [41]. To investigate the performance
of quantum machines with varying depths of a parametrized
quantum gate layer, the authors of the article [42] utilized this
dataset and polarimetric EO images for natural embedding
in input qubits without a dimensionality reduction technique
[43]. It is important to note that the quality of the datasets
used plays a crucial role in data-driven tasks for hybrid
classical-quantum approaches [44]. Therefore, the article’s
authors [45] analyzed the power of EO image datasets for

training digital quantum machines.
Furthermore, a quantum annealer is a type of quantum

simulator that is designed to simulate an Ising Hamiltonian
equivalent to QUBO problems [22]. In recent articles’ au-
thors [46], [47], they analyzed classification problems posed
as QUBO problems, belonging to NP-hard problems, on
a D-Wave quantum annealer. They employed binary hy-
perspectral EO images since a D-Wave quantum annealer
promises to converge to a better solution to NP-hard
problems. Some studies also transformed a support vector
machine (SVM) into a QUBO problem [48] and optimized
it on a D-Wave quantum annealer when analyzing EO image
datasets [33], [49], [50]. To embed large EO datasets in a D-
Wave quantum annealer, the authors of [51] used a K-fold
technique and the concept of a coreset since a D-Wave quan-
tum annealer has around 5, 000 qubits arranged according to
an expressly limited topology. A D-Wave quantum annealer
was also proposed for a notoriously hard feature selection
task and multi-label SVM for remotely-sensed hyperspectral
images [52].

Lastly, quantum-inspired algorithms are becoming in-
creasingly popular in both academic and industrial circles
due to their energy and computational efficiency. These al-
gorithms are inspired by the potential advantages of quantum
algorithms, such as the quantum-inspired quantum Fourier
transformation [53], quantum-inspired AI/ML [54], and the
use of tensor networks to compress deep neural networks
(DNNs) [55]. Tensor networks are designed to compute
quantum many-body systems efficiently [56], and they are
currently being used to simulate quantum circuits on mod-
ern GPU tensor cores [57]. Thanks to these advancements,
quantum tensor networks have been successfully utilized to
decrease the weights of physics-informed neural networks
(PINNs) and increase the resolution of hyperspectral images
[58].

3) Selecting Earth observation data for quantum machines
When working with quantum machines in EO challenges,
it is vital to choose remotely sensed datasets based on the
principle that “the more features in the dataset, the less
quantum resources required.” Studies have shown that pro-
cessing multispectral images requires more quantum gates
and qubits than hyperspectral and polarimetric images [36],
[43]. This is because multispectral images need global fea-
ture capturing, with each pixel dependent on its neighbors,

VOLUME 4, 2016 3



Author et al.: Preparation of Papers for IEEE Transactions on Quantum Engineering

ℝ610×340×103 ℝ300×290×3

𝐽

𝐼

𝐾

χ

ℂ200×180×3

𝑆

𝑆 =
𝑠𝐻𝐻 𝑠𝐻𝑉
𝑠𝑉𝐻 𝑠𝑉𝑉

FIGURE 3. [Top] example hyperspectral, multispectral, and polarimetric
images, [Bottom Left] their third-order tensor representation, and [Bottom
Right] each pixel/target in polarimetric images is characterized by the complex
numbered scattering matrix in contrast to hyperspectral and multispectral
images. Here, sij denotes a scattering element given sent/reflected horizontal
H or vertical V polarized beam.

making processing more resource-intensive. On the other
hand, hyperspectral and polarimetric images contain infor-
mative spectral information for each pixel. They can be
embedded in qubits without the constraint of their neighbors,
making processing less resource-intensive [43]. For instance,
one QML model known as a quantum convolutional neural
network (QCNN) requires approximately 4, 000 quantum
gates only to embed the element R64×64×12 in the Eurosat
dataset and roughly 60, 000 quantum gates for embedding
the multispectral image R300×290×3 illustrated in Figure 3
in the input qubits [59]. Hence, multispectral images are
not viable for deploying QCNNs on today’s quantum ma-
chines, even on future quantum machines. However, a hybrid
classical-quantum model requires fewer quantum resources
than QCNNs. The authors of the article [36] used only 16
quantum gates for encoding the Eurosat and the multispectral
image R300×290×3 depending on the compressing quality. In
contrast, we can embed the pixels of a hyperspectral image,
e.g., the Pavia University hyperspectral image, in the input
qubits using only at least three and, at most, about 103
quantum gates thanks to their abundant spectral bands [33].
As for polarimetric images, we need at most five quantum
gates due to their doppelgänger feature to qubits or the one-
to-one mapping between polarimetric images and qubits [43].

Based on the above analysis, hyperspectral satellite images
are much more appropriate for designing and assessing QML
models and tackling climate challenges than multispectral
and polarimetric images since they have abundant spectral
information and fewer quantum resources required than other
remotely sensed datasets. More importantly, QML models
generalize better on small-scale datasets than their classi-
cal alternatives [60], whereas a hyperspectral dataset has
limited labeled images (or small-scale datasets) compared
to multispectral datasets and has more features than both
multispectral and polarimetric datasets.

CPU: Optimization

QC system: Sampling

GPU: Multiplication and 

Addition

novel heterogeneous computing: HPC+QC

QC system

HPC system

FIGURE 4. Novel heterogeneous computing: a high performance and
quantum computing paradigm. Here, conventional heterogeneous computing
refers to the programming of CPU and GPU, whereas we call novel
heterogeneous computing when integrating QPUs with CPUs and GPUs.
QPUs can be several parallel quantum machines based on different quantum
technologies such as quantum annealing, neutral atoms, superconducting,
and photonic.

D. HOW AND WHEN DO QUANTUM MACHINES
OUTPERFORM CONVENTIONAL COMPUTERS?

It is becoming increasingly clear that quantum processing
units (QPUs) will soon be working alongside conventional
classical computers, like how central processing units (CPUs)
and general processing units (GPUs) are used in heteroge-
neous computing [30]. We are currently in the era of high-
performance computing (HPC), and the emergence of quan-
tum computing (QC) is a new and exciting concept in hetero-
geneous computing. It involves integrating a CPU+GPU with
QPUs designed to handle specific computational problems
(see Fig. 4). For instance, a quantum annealer is designed
to tackle only QUBO problems, and neutral atom platforms
can simulate certain chemical Hamiltonians. Depending on
the difficulty level of the computational problems, we may
need to program a challenging heterogeneous computing
environment (i.e., CPU+GPU+QPUs) or a conventional one
(i.e., CPU+GPU).

QPUs, except for quantum annealers, currently consist of
around 100 error-prone qubits and low-depth, faulty quan-
tum gates. The authors of the article [61] coined these
devices as "noisy intermediate-scale quantum (NISQ) de-
vices.” However, for practical computational problems, there
is no demonstration of the computational advantage of NISQ
devices over a conventional classical computer. Therefore,
estimating the quantum resources required to tackle hard
computational and ML problems is vital to achieving a quan-
tum advantage in EO. It is worth noting that some quantum
algorithms can be simulated efficiently using a conventional
classical computer. For this reason, any reasonable quantum
resource estimation of a quantum algorithm should consider
non-Clifford T-gates, error rates of qubits and quantum gates,
and the execution time of single- and two-qubit quantum
gates [62].

Non-Clifford T-gates are the most resource-expensive part
of implementing a quantum algorithm, compared to Clif-
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FIGURE 5. A visual representation of traditional NNs.

ford quantum gates or CNOT, Hadamard, Phase, and mea-
surement gates. Even the Gottesman-Knill theorem states
(informally) that non-Clifford T-gates cannot be efficiently
simulated on a conventional classical computer. In contrast,
Clifford quantum gates can be simulated in polynomial
time using a conventional classical computer without any
restriction on entanglement [62], [63]. Specifically, quantum
algorithms consisting only of Clifford quantum gates can be
simulated in O(n2m) polynomial steps with n qubits and m
Clifford operations. However, quantum algorithms consisting
of Clifford+T gates take exponential steps O(κt3ϵ−2), with
the number of T-gates known as T count (t), stabilizer state
(k) growing exponentially O(2t), and an error rate (ϵ) [62].
We note that some quantum algorithms can be efficiently
simulated using a sophisticated classical technique like a
tensor network on GPU tensor cores [64].

The Clifford+T gate set {S,H,CNOT, T} is considered
a universal gate set for digital QPUs. This is due to the
feasibility of quantum error-correcting, known as a surface
code [65]. More importantly, the surface code enables the
creation of fault-tolerant digital quantum computers that
surpass the NISQ-era computers [35]. In contrast to NISQ
computers, fault-tolerant quantum computers are made up
of error-free qubits and quantum gates that are transpiled
into the Clifford+T gate set. Therefore, this shows that for
quantum advantage in EO applications to be reached if and
only if our quantum learning models have a sufficiently high
number O(1012) of T-gates and generalize on unseen data
points [66]. Otherwise, we can simulate them efficiently
using conventional classical computing resources.

Further, a hybrid classical-quantum approach for compu-
tational EO problems is embedding high-dimensional clas-
sical data in a limited number of qubits and optimizing the
weights of a parameterized quantum model [36], [67]. There
is yet another challenging question: how notoriously difficult
computational problems can take advantage of both HPC and
QC systems or when we should execute them on an HPC
instead of a QC system and vice versa. We decompose the
parameterized quantum model into the Clifford+T gate set at
each learning iteration to tackle these issues. If the param-
eterized quantum model only includes Clifford gates and a

small number of T-gates [68], then we execute it on the HPC
system instead of the QC machines since we already know
that Clifford gates and hundreds of T-gates can be simulated
efficiently using a conventional classical computer. We re-
emphasize that quantum learning models can be simulated
efficiently using a classical computer without the need for
quantum computers if they do not have a high number of T-
gates.

1) Quantum machine learning: symmetry-breaking
Symmetry-breaking refers to asymmetric tunable weights of
traditional ML models such that the weights capture and
rank the dataset’s features during training. Consider a neural
network with a single hidden layer. Mathematically, it is
defined as illustrated in Figure 5:

h1
z = f

(
w0,z +

2∑

k=0

w0,k,zxk

)
, z = 1, . . . , 5, (1)

ỹt = f

(
h0,t +

5∑

k=1

w1,k,th
1
k

)
, t = 1, 2, (2)

where f (·) is a non-linear activation function, w’s denotes a
tuneable weight, and xk is the dataset’s feature. We note that
w’s must have different values identical to a linear regression
model ỹ ∼ w0 + w1 · x0 + w2 · x1. If the model weights are
symmetric w1 = w2, it has not learned the dataset’s feature.
To capture the dataset’s feature, the learning model must have
asymmetric weights w1 ̸= w2, or the learning model must
break the symmetry in its weights. Identical to the symmetry-
breaking in conventional ML, the authors of the article [18]
implicitly demonstrated that QML models also must break
symmetry in their weights, resulting in better generalizability
or more expressive power and higher effective dimension
than their classical counterparts. In particular, they identified
and disregarded some redundant weights in their quantum
models that are symmetric (e.g., the same digital values) and
do not simultaneously increase the QML model’s expressive
power. They, however, did not estimate the hardness of their
QML models characterized by non-Clifford T-gates that can
be implemented efficiently on quantum machines and other-
wise difficult on conventional HPC systems.

Furthermore, to outperform classical learning models de-
ployed on an HPC system, we should invent and design QML
models having thousands of T-gates, and their expressive
power (signaling the symmetry-breaking in QML models) is
higher than their classical counterparts [16]. There is (still)
no such QML model with thousands of T-gates and higher
expressive power on unseen data points than its classical
counterpart.

II. QUANTUM RESOURCE ESTIMATION FOR
HYPERSPECTRAL IMAGES
A hyperspectral imaging satellite, such as the EnMAP satel-
lite, is a type of imaging instrument mounted on a satellite
and used to sense spectral reflectances [69]. The mission

VOLUME 4, 2016 5



Author et al.: Preparation of Papers for IEEE Transactions on Quantum Engineering

of this satellite is to collect hyperspectral imaging data that
provides crucial information for scientific inquiries, societal
grand challenges, and key stakeholders and decision-makers.
This information pertains to various topics, such as climate
change impact and interventions, hazard and risk assessment,
biodiversity and ecosystem processes, land cover changes,
and surface processes.

We already have seen that hyperspectral images require
less quantum resources than other remotely sensed datasets.
They also have limited label information, and there is limited
availability of benchmark hyperspectral images compared
to conventional benchmark remote-sensing datasets, such as
multispectral images [70], [71]. When training QML models
on limited benchmark-oriented labeled hyperspectral image
datasets, a classical layer can reduce the dimensionality of
the hyperspectral image dataset’s spectral bands due to the
limited number of input qubits. However, the degree of
dimensionality reduction required for the given hyperspectral
image dataset depends on the utilized quantum machines.
Regardless of their error, this means whether we can access
a quantum machine with qubits ≤ 100 or > 100. The role of
classical machines in pre-processing the hyperspectral image
dataset is reduced as we can feed many informative features
to a quantum machine with less dimensionality reduction,
especially as the number of qubits of quantum machines
increases. We assume we used EnMAP hyperspectral images
with 103 spectral bands and 610 × 340 spatial dimensions.
The EnMAP hyperspectral images also have 207, 400 data
points and 103 features, which are small-scale image datasets
compared to conventional multispectral images. To execute
the QML model on the quantum machine having ≤ 100
input qubits, we can either reduce the spectral bands of the
EnMAP hyperspectral images from 103 to at most 100 or
select the most informative 100 bands to be compatible with
the input qubits by utilizing a classical machine. Instead, for
quantum machines with more than 100 input qubits, we can
use a classical machine to persevere more spectral bands
of the EnMAP hyperspectral images when performing the
dimensionality reduction or the feature selection technique
in the spectral bands.

Toward quantum resource estimation, we assessed four
different PQC models expressed by the Clifford+T gate set
(see Figs. 6-9). The Clifford+T gate set is defined by U1, U2,
U3 and CNOT gates:

U1(λ) =

(
1 0
0 eiλ

)
, U2(λ, ϕ) =

1√
2

(
1 −eiϕ

eiλ ei(λ+ϕ)

)
,

U3(λ, ϕ, γ) =

(
cos(λ/2) −eiγ sin(λ/2)

−eiϕ sin(λ/2) ei(ϕ+γ) cos(λ/2)

)
,

(3)

where, for example, U1(π/4) = T , U1(π/2) = S,
U2(0, π) = H . Hence, the Clifford+T gate set is {U1(π/2),
U2(0, π), CNOT, U1(π/4)}.

We have chosen the PQC models in Figs. 6-9 as bench-
mark QML models identical to conventional benchmark deep

|0⟩ U3(λ0, 0, 0) • U3(λ5, 0, 0) • U3(λ10, 0, 0) • U3(λ15, 0, 0)

|0⟩ U3(λ1, 0, 0) • U3(λ6, 0, 0) • U3(λ11, 0, 0) • U3(λ16, 0, 0)

|0⟩ U3(λ2, 0, 0) • U3(λ7, 0, 0) • U3(λ12, 0, 0) • U3(λ17, 0, 0)

|0⟩ U3(λ3, 0, 0) • U3(λ8, 0, 0) • U3(λ13, 0, 0) • U3(λ18, 0, 0)

|0⟩ U3(λ4, 0, 0) U3(λ9, 0, 0) U3(λ14, 0, 0) U3(λ19, 0, 0)

FIGURE 6. We transpiled a real-amplitude quantum circuit having depth-one
into the Clifford+T gate set. It is used to demonstrate the power of a PQC
model by the authors of the article [16].

|0⟩ • • • • • • • • U2(0, π) • • U2(0, π) U2(0, π)

|0⟩ U1(λ1) U2(0, π) U1(λ5) U2(0, π)

|0⟩ U1(λ2) U2(0, π)

|0⟩ U1(λ3) U2(0, π)

|0⟩ U1(λ4) U2(0, π)

• • U2(0, π) U2(0, π) • • U2(0, π) U2(0, π) • • U2(0, π)

U1(λ6) U2(0, π)

U1(λ7) U2(0, π)

U1(λ8) U2(0, π)

FIGURE 7. We transpiled an energy-based quantum circuit having depth-one
into the Clifford+T gate set. This PQC model is proposed for the NISQ device
by the authors of the article [73].

learning (DL) models, such as Resnet [72]. The quantum re-
source required for executing them on the quantum machine
is O(1) (constant time) if there is either no sign of T-gates
or a low number of T-gates. In particular, we will deploy
them on either the HPC system or the quantum machines
depending on the existence and the number of T-gates in
their configuration during the training phase. Furthermore,
the number of T-gates defines the quantum resource required
for deploying QML models on quantum computers.

We used the symmetry-breaking concept inherited from
conventional neural networks to determine the number of T-
gates in our four PQCs [74]. Again, we strongly emphasize
that QML models break the symmetry in their weights to
decrease their redundant parameterized quantum gates, re-
sulting in better generalization on unseen data points than
conventional neural networks [18]. Namely, each weight
within a parameterized quantum layer must have different
digital values for capturing unique features. Therefore, we
assumed that each layer of the QML models must have, at
most, a single T-gate at each learning iteration, and our QML
models having depth-one can only have one T-gate.

As for the quantum resource required for executing them
on the quantum hardware, we assumed also:

1) If our PQCs have 108 T-gates and 5 logical qubits
then we need 158, 431 physical qubits (i.e. 9, 375 state
distillation qubits, and 149, 056 physical qubits) with a
surface code distance of d = 25, and our QML models
then take around 5 hours per shot.

2) If our PQCs have three T-gates and 5 logical qubits
then we need 50, 700 physical qubits (i.e. 14, 400 state
distillation qubits, and 36, 300 physical qubits) with a
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FIGURE 8. We transpiled a strongly-entangling quantum circuit having
depth-one transpiled into the Clifford+T gate set. This PQC model is proposed
to build a powerful quantum learning model in the article [78].
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FIGURE 9. We transpiled a hardware-efficient quantum circuit having
depth-one into the Clifford+T gate set. This PQC is used for quantum
variational inference in the article [79].

surface code distance of d = 11, and our QML models
then take around 8.12−8 hours per shot.

3) If our PQCs have one T-gate and five logical qubits,
then we need 15, 135 physical qubits (i.e. 14, 400 state
distillation qubits, and 735 physical qubits) with a
surface code distance of d = 7, and our QML models
then take around 2.07−8 hours per shot.

Based on the study of the article’s authors [75], [76], we es-
timated the quantum resources required for deploying QML
models on error-correcting quantum machines known as sur-
face code quantum computers. Our estimation considers that
the quantum gate error is about p = 10−3, and the single
round of the surface code takes around 10−6 seconds. Here,
the hours refer to T-gates preparation; the article’s authors
[75] provided a detailed spreadsheet for the quantum re-
source estimation. The quantum resource estimation demon-
strates whether the QML models have to be deployed on
quantum computers or not [68], [77], and it also generates the
number of physical qubits required for deploying quantum
algorithms on the surface code quantum computers.

III. CONCLUSION
We assessed the quantum resource required to execute QML
models on a digital quantum computer to obtain a quantum
advantage. We demonstrated that some quantum advantage
can only be obtained if and only if QML models have a
sufficient number of T-gates and generalize better on unseen

data points than their classical counterparts. To count the
T-gates of a particular QML model, we used the strong
assumption that the QML models must break the symmetry
in their weights − identical to the symmetry-breaking in
conventional deep learning models − so that they become a
more powerful model than their counterpart classical learning
models. Based on the number of T-gates, we proposed a
new HPC+QC paradigm (novel heterogeneous computing).
In particular, we can simulate QML models on an HPC
system (i.e. CPU+GPU) if they comprise a few hundred T-
gates.

Toward quantum advantage in Earth observation, we fo-
cused on QML models for hyperspectral images acquired
by the EnMAP satellite since QML models can be trained
on a limited labeled dataset, and our hyperspectral images
have limited label information compared with multispectral
images. For QML models, we utilized four parameterized
quantum circuits and estimated the quantum resources re-
quired for deploying them on digital quantum machines. We
found that we can deploy our QML models on an HPC
system instead of a QC system since they only have a
single T-gate due to the symmetry-breaking assumption. To
design QML models with around O(108) that cannot be
executed on an HPC system, they must have almost a depth of
O(108), which is impractical for current and future quantum
computers. Toward quantum advantage, it seems, therefore,
reasonable to build, first, a special-purpose digital quantum
computer for some practically significant computational task
instead of a universal digital quantum computer similar to a
D-Wave quantum annealer.

As future and ongoing work, we will invent and design a
QML model with a reasonable depth that cannot be simulated
on HPC systems but can be executed efficiently on QC
systems and simultaneously has more expressive power over
classical learning models.
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