Kuzu, Ridvan Salih and Bagaglini, Leonardo and Wang, Yi and Dumitru, Corneliu Octavian and Ait Ali Braham, Nassim and Pasquali, Giorgio and Santarelli, Filippo and Trillo, Francesco and Saha, Sudipan and Zhu, Xiao Xiang (2023) Automatic Detection of Building Displacements Through Unsupervised Learning From InSAR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, pp. 6931-6947. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2023.3297267. ISSN 1939-1404.
PDF
- Published version
10MB |
Official URL: https://ieeexplore.ieee.org/abstract/document/10188664
Abstract
We introduce an unsupervised learning method that aims to identify building anomalies using Interferometric Synthetic Aperture Radar (InSAR) time-series data. Specifically, we leverage data obtained from the European Ground Motion Service to develop our proposed approach, which employs a long short-term memory autoencoder model and a reconstruction loss function based on a soft variant of the dynamic time warping, namely “soft-DTW”. We deliberately utilize this loss function for its ability to compare time-series that are not aligned in time, unlike the other conventional reconstruction losses that do not account for time shifts. Moreover, we enhance the performance of anomaly detection by smoothing inputs with a Hann window and defining the learning objective to reconstruct the time order of randomly permuted input series. Our experimental findings, based on persistent scatterer data from Rome, Italy, reveal that our method outperforms several unsupervised machine learning and deep learning methods in detecting various types of building displacement, such as trend, noise, and step anomalies. Additionally, quantitative and qualitative evaluations validate the efficacy of our approach in identifying potentially anomalous buildings. Thus, our method offers a promising solution for detecting anomalies in PS-InSAR time-series, which could have substantial implications in the fields of urban monitoring and infrastructure management.
Item URL in elib: | https://elib.dlr.de/198750/ | ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||||||||||||||||||
Title: | Automatic Detection of Building Displacements Through Unsupervised Learning From InSAR Data | ||||||||||||||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||||||||||||||
Date: | 2023 | ||||||||||||||||||||||||||||||||||||||||||||
Journal or Publication Title: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||||||||||||||||||
Volume: | 16 | ||||||||||||||||||||||||||||||||||||||||||||
DOI: | 10.1109/JSTARS.2023.3297267 | ||||||||||||||||||||||||||||||||||||||||||||
Page Range: | pp. 6931-6947 | ||||||||||||||||||||||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||||||||||||||
Keywords: | Buildings, Deformation, Time series analysis, Monitoring, Training, Market research, Unsupervised learning | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - SAR methods, R - Artificial Intelligence | ||||||||||||||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||||||||||||||||||
Deposited By: | Kuzu, Dr. Ridvan Salih | ||||||||||||||||||||||||||||||||||||||||||||
Deposited On: | 08 Nov 2023 12:17 | ||||||||||||||||||||||||||||||||||||||||||||
Last Modified: | 27 Feb 2024 18:13 |
Repository Staff Only: item control page