Kuzu, Ridvan Salih and Maiorana, Emanuele and Campisi, Patrizio (2023) Gender-Specific Characteristics for Hand-Vein Biometric Recognition: Analysis and Exploitation. IEEE Access, 11, pp. 11700-11710. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/ACCESS.2023.3239894. ISSN 2169-3536.
PDF
- Published version
2MB |
Official URL: https://dx.doi.org/10.1109/ACCESS.2023.3239894
Abstract
In recent years, vein-based biometric recognition has received ever-increasing attention from both academia and industry, due to the advantages it offers over traditional biometric traits such as fingerprint, iris, and face. Nonetheless, some issues related to the use of vein biometrics still need to be investigated and understood. Specifically, in this study, we speculate about the gender-related variations in vein patterns, and their effects on biometric verification performance. An analysis on the feasibility of recognizing male and female subjects depending on their hand-vein patterns, and on the level of similarity characterizing the biometric templates extracted from male and female populations, are here carried out considering three different databases. Specifically, the public VERA dataset, containing samples of palm-vein patterns, and two datasets containing images of finger-vein patterns, i.e., the UTFVP public database, and an in-house dataset collected with an on-the-move contactless modality, are here considered. The obtained experimental results show that the approach here proposed to perform gender recognition allows to reach an accuracy up to 95.83% on the public finger-vein UTFVP dataset, and to outperform the current state-of-the-art on the public palm-vein VERA dataset, with accuracy at 93.55%. It is also shown that vein-based biometric systems can benefit from the exploitation of information regarding the gender of the considered subjects, with achievable recognition rates that can be significantly improved by designing a biometric verification system relying on gender-specific models for extracting the employed discriminative templates.
Item URL in elib: | https://elib.dlr.de/198746/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | Gender-Specific Characteristics for Hand-Vein Biometric Recognition: Analysis and Exploitation | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | January 2023 | ||||||||||||||||
Journal or Publication Title: | IEEE Access | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | 11 | ||||||||||||||||
DOI: | 10.1109/ACCESS.2023.3239894 | ||||||||||||||||
Page Range: | pp. 11700-11710 | ||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 2169-3536 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Biometric recognition, gender recognition, vein biometrics, deep learning | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Kuzu, Dr. Ridvan Salih | ||||||||||||||||
Deposited On: | 08 Nov 2023 10:11 | ||||||||||||||||
Last Modified: | 17 Nov 2023 18:31 |
Repository Staff Only: item control page