elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Gender-Specific Characteristics for Hand-Vein Biometric Recognition: Analysis and Exploitation

Kuzu, Ridvan Salih und Maiorana, Emanuele und Campisi, Patrizio (2023) Gender-Specific Characteristics for Hand-Vein Biometric Recognition: Analysis and Exploitation. IEEE Access, 11, Seiten 11700-11710. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/ACCESS.2023.3239894. ISSN 2169-3536.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://dx.doi.org/10.1109/ACCESS.2023.3239894

Kurzfassung

In recent years, vein-based biometric recognition has received ever-increasing attention from both academia and industry, due to the advantages it offers over traditional biometric traits such as fingerprint, iris, and face. Nonetheless, some issues related to the use of vein biometrics still need to be investigated and understood. Specifically, in this study, we speculate about the gender-related variations in vein patterns, and their effects on biometric verification performance. An analysis on the feasibility of recognizing male and female subjects depending on their hand-vein patterns, and on the level of similarity characterizing the biometric templates extracted from male and female populations, are here carried out considering three different databases. Specifically, the public VERA dataset, containing samples of palm-vein patterns, and two datasets containing images of finger-vein patterns, i.e., the UTFVP public database, and an in-house dataset collected with an on-the-move contactless modality, are here considered. The obtained experimental results show that the approach here proposed to perform gender recognition allows to reach an accuracy up to 95.83% on the public finger-vein UTFVP dataset, and to outperform the current state-of-the-art on the public palm-vein VERA dataset, with accuracy at 93.55%. It is also shown that vein-based biometric systems can benefit from the exploitation of information regarding the gender of the considered subjects, with achievable recognition rates that can be significantly improved by designing a biometric verification system relying on gender-specific models for extracting the employed discriminative templates.

elib-URL des Eintrags:https://elib.dlr.de/198746/
Dokumentart:Zeitschriftenbeitrag
Titel:Gender-Specific Characteristics for Hand-Vein Biometric Recognition: Analysis and Exploitation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kuzu, Ridvan SalihRidvan.Kuzu (at) dlr.dehttps://orcid.org/0000-0002-1816-181X146191967
Maiorana, EmanueleNICHT SPEZIFIZIERThttps://orcid.org/0000-0002-4312-6434NICHT SPEZIFIZIERT
Campisi, PatrizioNICHT SPEZIFIZIERThttps://orcid.org/0000-0002-1923-2739NICHT SPEZIFIZIERT
Datum:Januar 2023
Erschienen in:IEEE Access
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:11
DOI:10.1109/ACCESS.2023.3239894
Seitenbereich:Seiten 11700-11710
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:2169-3536
Status:veröffentlicht
Stichwörter:Biometric recognition, gender recognition, vein biometrics, deep learning
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Kuzu, Dr. Ridvan Salih
Hinterlegt am:08 Nov 2023 10:11
Letzte Änderung:17 Nov 2023 18:31

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.