Niemeijer, Joshua and Ehrhardt, Jan and Kepp, Timo and Handels, Heinz and Schaefer, Jörg P. (2023) Overcoming the sensor delta for semantic segmentation in OCT images. In: Medical Imaging 2023: Computer-Aided Diagnosis. SPIE Medical Imaging, 2023-02-19 - 2023-02-24, San Diego. doi: 10.1117/12.2654187. ISBN 978-151066035-9. ISSN 1605-7422.
![]() |
PDF
- Only accessible within DLR
1MB |
Abstract
The performance of a segmentation network optimized on data from a specific type of OCT sensor will decrease when applied to data from a different sensor. In this work, we deal with the research question of adapting models to data from an unlabeled new sensor with new properties in an unsupervised way. This challenge is known as unsupervised domain adaptation and can alleviate the need for costly manual annotation by radiologists. We show that one can strongly improve a model's result that was trained in a supervised way on the source OCT sensor domain on the target sensor domain. We do this by aligning the source and target domain distributions in the feature space through a semantic clustering method. Apart from the unsupervised domain adaptation we improved even the supervised training compared to the results in the RETOUCH challenge by employing a sophisticated training strategy. The RETOUCH challenge contains three different types of OCT scanners and provides annotations for the task of disease-related fluid classes.
Item URL in elib: | https://elib.dlr.de/198541/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Overcoming the sensor delta for semantic segmentation in OCT images | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | April 2023 | ||||||||||||||||||||||||
Journal or Publication Title: | Medical Imaging 2023: Computer-Aided Diagnosis | ||||||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
DOI: | 10.1117/12.2654187 | ||||||||||||||||||||||||
ISSN: | 1605-7422 | ||||||||||||||||||||||||
ISBN: | 978-151066035-9 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | OCT, Segmentation, Unsupervised Learning, Domain Adaptation | ||||||||||||||||||||||||
Event Title: | SPIE Medical Imaging | ||||||||||||||||||||||||
Event Location: | San Diego | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Start Date: | 19 February 2023 | ||||||||||||||||||||||||
Event End Date: | 24 February 2023 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Transport | ||||||||||||||||||||||||
HGF - Program Themes: | Road Transport | ||||||||||||||||||||||||
DLR - Research area: | Transport | ||||||||||||||||||||||||
DLR - Program: | V ST Straßenverkehr | ||||||||||||||||||||||||
DLR - Research theme (Project): | V - KoKoVI - Koordinierter kooperativer Verkehr mit verteilter, lernender Intelligenz | ||||||||||||||||||||||||
Location: | Braunschweig | ||||||||||||||||||||||||
Institutes and Institutions: | Institute of Transportation Systems Institute of Transportation Systems > Cooperative Systems, BS | ||||||||||||||||||||||||
Deposited By: | Niemeijer, Joshua | ||||||||||||||||||||||||
Deposited On: | 05 Dec 2023 14:52 | ||||||||||||||||||||||||
Last Modified: | 17 Oct 2024 08:18 |
Repository Staff Only: item control page